MIZORAM PUBLIC SERVICE COMMISSION

Technical Competitive Examinations for Recruitment to the post of Junior Grade of Mizoram Planning, Economics & Statistical Service October, 2015

MATHEMATICS PAPER-II

Time Allowed: 3 hours Full Marks: 100

Figures in the margin indicate full marks for the questions.

PART-A

Attempt all questions.

 $(10 \times 2 = 20)$

(i)	The function $f(x, y) = y^{\overline{2}}$ on $R: x \le 1, y \le 1$			
	(a) satisfies Lipschitz condition	(b)	does not satisfy Lip	schitz condition

(c) cannot test Lipschitz condition (d) none of these

(ii) The value of
$$(1+i)^4 \left(1+\frac{1}{i}\right)^4$$
 is

(a) 4

(b) 8

(c) 16

(d) 28

(iii) The complete integrals of the PDE z = px + qy + p + q - pq is

(a)
$$z = ax + by + a - ab$$

(b) $z = ax + by + b - ab$
(c) $z = ax + by - ab$
(d) $z = ax + by + a + b - ab$

(iv) The solution of the PDE

1. Choose the correct answer from the following:

 $p = (z + qy)^2$ by Jacobi's method is given by

(a)
$$u_1.u_2 = b$$
 (constant)
(b) $u_1.u_3 = b$ (constant)
(c) $u_2.u_3 = b$ (constant)
(d) none of these

(v) The integrating factor of the equation $y' - \frac{\tan y}{1+x} = (1+x)e^x$

(a)
$$\frac{1}{1+x}$$
 (b) $-\frac{1}{1+x}$

(c)
$$\frac{e^x}{1+x}$$
 (d) $e^x + 1$

. 1		αŽ.	^ 2	
ć:N	The partial differential equation	o^-u	$u^{O^{-}U}$	
(VI)	The partial differential equation	2.2	$y_{\frac{1}{2}} = 0$	has
		oy	ox	

- (a) Two families of real characteristics curves for y < 0.
- (b) No real characteristics curves for y > 0.
- (c) Vertical lines as family of characteristics curves for y = 0
- (d) Branches of quadratic curve as characteristics for $y \neq 0$
- (vii) A particle executing a simple harmonic motion has acceleration 8 cm/sec² when it is at a distance 2 cm from the centre. The time period will be
 - (a) $\frac{2}{\pi}$ second

(b) $\frac{1}{\pi}$ second

(c) π second

- (d) $\frac{\pi}{2}$ second
- (vii) The necessary condition to exact the differential equation M dx + N dy = 0 is
 - (a) $\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = 0$

(b) $\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$

(c) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$

- (d) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
- (ix) The Residue of $f(z) = \frac{z^2}{(z-a)(z-b)(z-c)}$ at $z = \infty$ is
 - (a) 1

(b) -1

(c) e

(d) -e

- (x) For any primal and its dual
 - (a) optimum value of the objective function is same.
 - (b) both primal and dual cannot be feasible.
 - (c) primal will have an optimum solution if and only if dual does too.
 - (d) all of these

PART - B

Attempt all questions.

2. If
$$\psi = \frac{a}{\sqrt{(x-\xi)^2 + (y-\eta)^2 + (z-\gamma)^2}}$$
, show that $\nabla^2 \psi = 0$. (2)

3. Show that the function $f(z) = e^{\frac{1}{z}}$ actually takes every values except zero an infinite number of times in the neighbourhood of z = 0.

(2)

4. If $f(x) = \ln x$, find the value of f'(2.0) from the given table

5. Find the complementary function of
$$x^2y'' + 3xy' + y = (1-x)^{-2}$$

- 6. Calculate $\int_{2}^{10} \frac{dx}{1+x}$ (up to 3 decimal places) by dividing the range into 8 equal parts by Simpson's $\frac{1}{3}$ rule.
- 7. Find particular equation of the partial differential equation r 2s + t = 12 xy. (2)
- 8. Show that the set $X = \{(x_1, x_2) | x_1^2 + x_2^2 \le 4\}$ is a convex set. (2)
- 9. Use graphical method to solve the linear programming problem

 Maximize $z = 2x_1 + 4x_2$, subject to the constraints: $x_1 + 2x_2 \le 5; x_1 + x_2 \le 4; x_1, x_2 \ge 0.$
- 10. Using Newton-Raphson method, find the root correct to 2 decimal places of the equation.

$$x^3 - 5x + 3 = 0$$
. (2)

11. Using Cauchy residue theorem evaluate

$$\int_{C} \frac{z}{z^4 - 1} dz, C: |z| = 2.$$
 (2)

PART-C

Attempt any 6 (six) questions.

12. Reduce the equation
$$\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$$
 to canonical form. (10)

- 13. Show that the equations x p y q = x, $x^2 p + q = xz$ are compatible and hence solve it. (10)
- 14. Find the complete integrals of the PDE $z^2 = pqxy$. (10)

15. Apply Langrange's formula to interpolate f(1.50) using the following values of the function f(x)

16. Solve the following linear programming problem by simplex method. (10)

Maximize $z = 8x_1 + 7x_2 - 2x_3$

Subject to the constraints

$$x_1 + 2x_2 + 2x_3 \le 12$$

$$2x_1 + x_2 - 2x_3 \le 12$$

$$x_1, x_2, x_3 \ge 0.$$

17. Solve the differential equation

(10)

$$\frac{dy}{dx} + xy = 0, \ y(0) = 1$$

from x = 0 to x = 0.25 taking h = 0.05 using Predictor - Corrector method.

18. Two materials A and B are required to construct tables and book cases. For one table 12 units of A and 16 units of B are needed while for a book case 16 units of A and 8 units of B are required. The profit on book case is Rs 25 and Rs 20 on table. 100 units of material A and 80 units of B are available. How many book cases and tables be produced to have maximum profit.

Formulate this as a LPP and solve by simplex method. (10)

19. Prove that every non constant polynomial over C (the field of complex numbers) has a root in C. (10)

20. Solve
$$\frac{d^4y}{dx^4} - 16y = x^4 + \sin x$$
. (10)

21. Use residues to evaluate
$$\int_0^{2\pi} \frac{d\theta}{5 + 4\sin\theta}$$
 (10)

* * * * * *