CSM: 15

MATHEMATICS PAPER - II

Time Allowed: 3 hours Full Marks: 100

Marks for each question is indicated against it.

Attempt any 5 (five) questions taking not more than 3 (three) questions from each Part.

PARTA

- (a) Prove that a subgroup N of a G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.
 - (b) If S is an ideal of a ring R and T be any subring of R. Show that $(S+T)/S \cong T/S(S \cap T)$ (12)
- 2. (a) If H is a homogeneous function of x, y, z of degree n. Prove that

$$x\frac{\partial H}{\partial x} + y\frac{\partial H}{\partial y} + z\frac{\partial H}{\partial z} = nz.$$
 (6)

- (b) Show that the function $f:(0,1] \to \Box$ defined by $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1].
- (c) Find the maxima and minima of the function $f: \square^2 \to \square$ defined by

$$f(x,y) = x^3 + y^3 - 3x - 12y + 20. (7)$$

- 3. (a) Prove that for a > 1, $\int_{0}^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 1}}$ (10)
 - (b) Use method of contour integration to prove that

$$\int_{0}^{2\pi} \frac{d\theta}{1 + a^2 - 2a\cos\theta} = \frac{2\pi}{1 - a^2}, \ 0 \le a < 1.$$
 (10)

4. (a) Solve the following LPP by simplex method Maximize $z = 4x_1 + 7x_2$ subject to

$$2x_1 + x_2 \le 10$$

$$x_1 + x_2 \le 6$$

$$x_1 + 2x_2 \le 10$$

$$x_1, x_2 \ge 0$$
(10)

(b) Find the optimal solution and the corresponding cost of transportation in the following transportation problem:

	D_1	D_2	D_3	D_4	a_i
<i>O</i> ₁	19	20	50	10	7
<i>O</i> ₂	70	30	40	60	9
<i>O</i> ₃	40	8	70	20	18
b_j	5	8	7	14	

(10)

PART B

5. (a) Reduce the equation
$$y^2 \left(\frac{\partial^2 z}{\partial x^2} \right) - 2xy \left(\frac{\partial^2 z}{\partial x \partial y} \right) + x^2 \left(\frac{\partial^2 z}{\partial y^2} \right) = \left(\frac{y^2}{x} \right) \left(\frac{\partial z}{\partial x} \right) + \left(\frac{x^2}{y} \right) \left(\frac{\partial z}{\partial y} \right)$$
 to Canonical form and hence solve it. (10)

(b) By method of separation of variables solve the equation

$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2} \text{ if } u(x,0) = 4x - \frac{1}{2}x^2.$$
 (10)

6. (a) Compute y(0.1) by Runge-Kutta method of fourth order for the differential equation

$$\frac{dy}{dx} = xy + y^2, \ y(0) = 1.$$
 (7)

(b) Use Gauss elimination method to solve the following system of equations:

$$2x+3y+z=9 x+2y+3z=6 3x+y+2z=8$$
 (7)

(c) Find a real root of $x^3 - x - 4 = 0$ by bisection method correct upto four significant digits.

7. (a) Write the following Boolean functions in their respective conjunctive normal form:

(i)
$$f(x, y, z) = (xy' + xz)' + x'$$
 (5)

(ii)
$$f(x, y, z) = xyz + x'yz + xy'z' + x'yz'$$
 (5)

- (b) Convert the following numbers from the given bases to the bases indicated: $(4 \times 2 = 8)$
 - (i) $(1.5)_{10} = (?)_{2}$
 - (ii) $(DEAF)_{16} = (?)_2$
 - (iii) $(00001000)_2 = (?)_{16}$
 - (iv) $(76543210)_8 = (?)_{16}$
- (c) Write an algorithm for Simpson's $\frac{1}{3}$ rule. (2)
- 8. (a) Use Hamilton's equations to find the equations of motion of a projectile in space. (10)
 - (b) Use Lagrange's equations to find the differential equation for a compound pendulum which oscillates in a vertical plane about a fixed horizontal axis. (10)

* * * * * * *