MIZORAM PUBLIC SERVICE COMMISSION TECHNICAL COMPETITIVE EXAMINATIONS FOR JUNIOR GRADE OF MIZORAM ENGINEERING SERVICE (M.E.S.) UNDER PUBLIC HEALTH DEPARTMENT, GOVERNMENT OF MIZORAM, MAY, 2019. ## ELECTRONICS & COMMUNICATION ENGINEERING PAPER - II Time Allowed: 3 hours FM: 200 ## **SECTION - A** (Multiple Choice questions) | | | (100 Mark | s) | | |---|--|--|--|---| | | | All questions carry equal mark of 2 | each. | Attempt all questions. | | | | This Section should be answered only on the | ne <u>Ol</u> | MR Response Sheet provided. | | 1. | Choo | ose which of following condition is not requ | ired | for a waveguide to exist. | | | (a) | The dimensions should be in accordance w | ith d | esired frequency | | | (b) | Cut-off frequency should be minimum 6 GH | Ιz | | | | (c) | The shape should be spherical | | | | | (d) | No specific condition is required for wave | guide | e design | | 2. | 2. Which of the following relation will hold good? | | | | | | (a) | D = m H | (b) | $\mathbf{B} = \mathbf{e} \; \mathbf{E}$ | | | (c) | E = e D | (d) | $\mathbf{B} = m \mathbf{H}$ | | 3. | The | magnetostatics highly relies on which proper | rty? | | | | | Resistance | • | Capacitance | | | (c) | Inductance | (d) | Moment | | 4. | The | inductance is the measure of | | | | | (a) | Electric charges stored by the material | (b) | Emf generated by energising the coil | | | (c) | Magnetic field stored by the material | (d) | Magnetization of dipoles | | 5. | 5. Find the total flux in a coil of magnetic flux density 12 units and area 7 units. | | | 2 units and area 7 units. | | | | 0.84 | • | 0.96 | | | (c) | 8.4 | (d) | 9.6 | | 6. The amount of work done in moving a charge from one point to another along an eline or surface charge is | | | ne point to another along an equipotential | | | | | Zero | (b) | Infinity | | | ` ' | One | (d) | Two | | 7. | | al electric flux through any closed surface is | equa | al to the charge enclosed by that surface". | | | This | | | | | | ` / | Lenz's law | ` / | Gauss's law | | | (c) | Maxwell's law | (d) | Faraday's law | | 8. | 8. According to the coulomb's law, the force between two point charges is(a) Directly proportional to the product of the charges(b) Inversely proportional to the square of the distance between them(c) Along the line joining them | | | | | | |---|---|--|--|--|--|--| | | | | | ges | | | | | | | | nce between them | | | | | | | | | | | | | (d) | All of these | | | | | | 9. | One | electron charge is equal to | | | | | | | (a) | 925×10^{-31} C | (b) | 1.6019×10^{-19} C | | | | | (c) | -1.925×10^{-31} C | (d) | -1.6019×10^{-19} C | | | | 10. | Whe | n charged particle is projected opposite to d | irecti | on of magnetic field, it experiences force | | | | | (a) | $qvB \times cosu$ | (b) | qvB × sinu | | | | | (c) | qvB | (d) | zero | | | | 11. | Find | the Maxwell equation derived from Farada | y's la | aw. | | | | | (a) | Div(H) = J | (b) | Div(D) = I | | | | | (c) | Curl(E) = -dB/dt | (d) | Curl(B) = -dH/dt | | | | 12. | In wl | hich of the following forms can Maxwell's e | equat | ion not be represented? | | | | | (a) | Static | (b) | Differential | | | | | (c) | Integral | (d) | Harmonic | | | | 13. | The | charge build up in the capacitor is due to wh | citor is due to which quantity? | | | | | | (a) | Conduction current | (b) | Displacement current | | | | | (c) | Convection current | (d) | Direct current | | | | 14. | Whic | ch of the following parameters is not a prima | ary pa | arameter? | | | | | (a) | Resistance | (b) | Attenuation constant | | | | | (c) | Capacitance | (d) | Conductance | | | | 15. The networks in which the R, L, C parameters are individually concentrated or lumped at points in the circuit are called | | | vidually concentrated or lumped at discrete | | | | | | (a) | Lumped | (b) | Distributed | | | | | (c) | Parallel | (d) | Paired | | | | 16. | | characteristic impedance of a transmission li
ectively is | ine w | ith impedance and admittance of 16 and 9 | | | | | (a) | 25 | (b) | 1.33 | | | | | (c) | 7 | (d) | 0.75 | | | | 17. The propagation constant of a transmission line with impedance and admittance of respectively is | | | n impedance and admittance of 9 and 16 | | | | | | (a) | 25 | (b) | 144 | | | | | (c) | 12 | (d) | 7 | | | | 18. When a transmission line has a load impedance same as that of the characteristic imperiss said to be | | | that of the characteristic impedance, the line | | | | | | (a) | Parallel | (b) | Perpendicular | | | | | (c) | Polarized | (d) | Matched | | | | 19. | The wavelength of a wave with a frequency of 6 GHz in air is | | | | | | |-----|--|---|----------|--|--|--| | | (a) | 50 m | (b) | 5 m | | | | | (c) | 0.5 m | (d) | 0.05 m | | | | 20. | The basic requirements of transmitting antennas are: | | | | | | | | (a) | High efficiency | (b) | Low side lobes | | | | | (c) | Large signal to noise ratio | (d) | None of the mentioned | | | | 21. | is a device that converts electrons to photons or vice-versa. | | | | | | | | (a) | Antenna | (b) | Electron gun | | | | | (c) | Photon amplifier | (d) | Microwave tube | | | | 22. | The beam width of the antenna pattern measured at half power points is called: | | | | | | | | (a) | Half power beam width | (b) | Full null beam width | | | | | (c) | Beam width | (d) | None of the mentioned | | | | 23. | In which region a transistor acts as an open switch? | | | | | | | | (a) | cut off region | (b) | inverted region | | | | | (c) | active region | (d) | saturated region | | | | 24. | The base emitter voltage in a cut off region is | | | | | | | | (a) | greater than 0.7V | (b) | equal to 0.7V | | | | | (c) | less than 0.7V | (d) | cannot be predicted | | | | 25. | Which of the following helps in reducing the switching time of a transistor? | | | | | | | | (a) | a resistor connected from base to groun | ıd | | | | | | (b) | a resistor connected from emitter to gro | und | | | | | | (c) | a capacitor connected from base to grou | und | | | | | | (d) | a capacitor connected from emitter to g | round | | | | | 26. | The | use of amplifier in a circuit is to | | for input signal | | | | | (a) | Provide a phase shift | (b) | Provide strength | | | | | (c) | Provide frequency enhancement | (d) | Make circuit compatible | | | | 27. | Power amplifier directly amplifies | | | | | | | | (a) | Voltage of signal | (b) | Current of the signal | | | | | (c) | Power of the signal | (d) | All of the mentioned | | | | 28. | Transistor in power amplifier is | | | | | | | | (a) | An active device | (b) | A passive device | | | | | (c) | A op-amp | (d) | A voltage generating device | | | | 29. | Voltage shunt feedback amplifier forms | | | | | | | | (a) | A negative feedback | (b) | A positive feedback | | | | | (c) | Both positive and negative | (d) | None of the mentioned | | | | 30. | The | value of feedback resistor and resistor co | onnected | in series with the input signal source are | | | | | equa | I to 10 kW and 3.3 kW . Calculate the closest | sed loop | voltage gain? | | | | | ` / | -6.7 | ` ′ | -33 | | | | | (c) | -13.3 | (d) | -3.33 | | | | 31. | Which of the following is not an example for non-sinusoidal oscillator? | | | | | | | |-----|--|--|-------|--|--|--|--| | | (a) | Sawtooth Generators | (b) | Blocking oscillators | | | | | | (c) | Multivibrator | (d) | Crystal oscillators | | | | | 32. | The sinusoidal oscillator is also called | | | | | | | | | (a) | LC oscillator | (b) | Harmonic oscillator | | | | | | (c) | RC oscillator | (d) | Crystal oscillators | | | | | 33. | Whic | Which of the following oscillator is not using a feedback network for its oscillation? | | | | | | | | (a) | LC oscillator | (b) | RC oscillator | | | | | | (c) | Crystal oscillator | (d) | Relaxation oscillators | | | | | 34. | Relaxation oscillators are also known as | | | | | | | | | (a) | Multivibrator | (b) | Phase shift oscillators | | | | | | (c) | Blocking oscillators | (d) | Saw tooth generator | | | | | 35. | Bridge rectifier is an alternative for | | | | | | | | | 7 | Full wave rectifier | (b) | Peak rectifier | | | | | | (c) | Half wave rectifier | (d) | None of the mentioned | | | | | 36. | For a | half wave or full wave rectifier the Peak In | nvers | se Voltage of the rectifier is always | | | | | | | Greater than the input voltage | | · | | | | | | (b) | Smaller than the input voltage | | | | | | | | (c) | Equal to the input voltage | | | | | | | | (d) | Greater than the input voltage for full wave | recti | fier and smaller for the half wave rectifier | | | | | 37. | Which of the following electrical characteristics is not exhibited by an ideal op-amp? | | | | | | | | | (a) | Infinite voltage gain | (b) | Infinite bandwidth | | | | | | (c) | Infinite output resistance | (d) | Infinite slew rate | | | | | 38. | An ideal op-amp requires infinite bandwidth because | | | | | | | | | (a) Signals can be amplified without attenuation | | | | | | | | | (b) | (b) Output common-mode noise voltage is zero | | | | | | | | (c) Output voltage occurs simultaneously with input voltage changes | | | | | | | | | (d) Output can drive infinite number of device | | | | | | | | 39. | Find | the output voltage of an ideal op-amp. If \boldsymbol{V}_1 | and | V ₂ are the two input voltages | | | | | | (a) | $V_0 = V_1 - V_2$ | (b) | $V_O = A \times (V_1 - V_2)$ | | | | | | (c) | $V_0 = A \times (V_1 + V_2)$ | (d) | $V_0 = V_1 \times V_2$ | | | | | 40. | Find the input voltage of an ideal op-amp. It's one of the inputs and output voltages are $2V$ and $12V$. (Gain = 3) | | | | | | | | | (a) | 8v | (b) | | | | | | | (c) | -4v | (d) | -2v | | | | | 41. | Why is a demultiplexer called a data distributor? | | | | | | | | | (a) | The input will be distributed to one of the o | outpu | its | | | | | | (b) | One of the inputs will be selected for the or | utput | | | | | | | (c) | The output will be distributed to one of the | inpu | its | | | | | | (d) | Single input gives single output | | | | | | | 42. In 1-to-4 demultiplexer, how many select lines are required? | | | | | |---|--|-------|---|--| | (a) | 2 | (b) | 3 | | | (c) | 4 | (d) | 5 | | | 43. How | many AND gates are required for a 1-to-8 r | nulti | plexer? | | | (a) | 2 | (b) | 6 | | | (c) | 8 | (d) | 5 | | | 44. 3 bits | s full adder contains | | | | | (a) | 3 combinational inputs | (b) | 4 combinational inputs | | | (c) | 6 combinational inputs | (d) | 8 combinational inputs | | | 45. Acco | ording to Boolean law: $A + 1 = ?$ | | | | | (a) | | (b) | A | | | (c) | 0 | (d) | A' | | | 46. A (A | (+B) = ? | | | | | (a) | AB | (b) | 1 | | | (c) | (1 + AB) | (d) | A | | | 47. Which | ch one of the following statements is not cor | rect? | | | | (a) | Root loci can be used for analyzing stabilit | y and | I transient performance | | | (b) | (b) Root loci provide insight into system stability and performance | | | | | (c) | (c) Shape of the root locus gives idea of type of controller needed to meet design specification | | | | | (d) | Root locus can be used to handle more that | n one | e variable at a time | | | 48. Root circle | locus of $s(s+2) + K(s+4) = 0$ is a circle. Ve? | Vhat | are the coordinates of the center of this | | | (a) | -2,0 | (b) | -3,0 | | | (c) | -4,0 | (d) | -5,0 | | | 49. Cons | sider the following statements: | | | | | Nich | ol's chart gives information about | | | | | i. | Closed loop frequency response. | | | | | ii. | ii. The value of the peak magnitude of the closed loop frequency response Mp.iii. The frequency at which Mp occurs. | | | | | | | | | | | | ch of the above statements are correct? | | | | | ` , | ii and iii | ` ′ | i and ii | | | (c) | i and iii | (d) | i, ii and iii | | | | stable closed loop system, the gain at phase | | | | | ` ' | < 20 dB | ` ′ | < 6 dB | | | (c) | > 6 dB | (d) | > 0 dB | | | | | | | | ## SECTION - B (Short answer type question) (100 Marks) All questions carry equal marks of 5 each. This Section should be answered only on the **Answer Sheet** provided. - 1. What is 'antenna Gain'? Explain how does antenna radiate electromagnetic energy? - 2. What are the difference modes of propagation of electromagnetic waves? - 3. How does quarter wavelength section of a transmission line act as impedance transform? - **4.** A 50 W transmission line is terminated in an impedance of 20-j50. Calculate the reflection co-efficient. - 5. Show that for a TE_{19} mode, a frequency of 8 GHz will pass through a wave-guide of dimensions a = 1.5 cm, b = 1 cm if a dielectric with ; = 4 is inserted inside the guide. - **6.** Calculate the values of R and C for 100 Hz output in a Wein bridge oscillator and explain why it is necessary to have an amplifier section with very high input impedance. - 7. Draw the voltage transfer characteristics of OPAMP and explain the shape of the curve. - **8.** Draw the basic differentiator circuit using an OPAMP and show that the output voltage is differential of the input. - 9. Briefly describe the Dynamic Range and Noise Figure specifications of amplifiers. - 10. How is the gain of an amplifier affected by introduction of negative feedback? - 11. Subtract $(10110.011)_2$ from $(11010.10)_2$ and verify the result by showing equivalent decimal subtraction. - **12.** Draw a circuit symbol of 3-input and 4-input AND gates. Give respective logic expression. Also draw the truth table for 4-input AND gate. - **13.** What is noise immunity with reference of logic gates? Compare TTL, CMOS and ECL families on the basis of Noise Immunity. - **14.** Draw the logic diagram of a half adder using only NAND gates. Show the steps involved therein to arrive at the final configuration starting with the basic half adder logic expressions. - 15. What is a clocked J-K flip flop? What improvement does it have over the clocked R-S flip flops? - **16.** What are the advantages and disadvantages of closed loop control systems? - 17. Obtain the pole-zero map of the following transfer function: $$G(s) = \frac{(s-2)(s+2+j4)(s+2-j4)}{(s-3)(s-4)(s-5)(s+1+j5)(s+1-j5)}$$ **18.** Expand the following equation of Laplace transform in terms of its partial fractions and obtain its time-domain response. $$Y(s) = \frac{2s}{(s+1)(s+2)}$$ - **19.** Briefly explain the properties of Transfer Function. - **20.** Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine gain margin, phase margin and absolute stability. $$G(s)H(s) = \frac{1}{s^2(s+1)}$$ * * * * * * *