MIZORAM PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATIONS FOR RECRUITMENT TO THE POST OF INSPECTOR OF FACTORIES UNDER LABOUR, EMPLOYMENT, SKILL DEVELOPMENT & ENTREPRENEURSHIP DEPARTMENT, GOVERNMENT OF MIZORAM, 2019

MECHANICAL ENGINEERING PAPER - II

Time Allowed: 2 hours		Full Marks : 200
All questions carry equal Attempt all que		
1. In a reciprocating steam engine, which of the follow	ing f	orms a kinematic link?
(a) cylinder and piston(c) crank shaft and flywheel	` ′	piston rod and connecting rod flywheel and engine frame
2. The motion of a piston in the cylinder of a steam en	gine	is an example of -
(a) completely constrained motion	(b)	incompletely constrained motion
(c) successfully constrained motion	(d)	none of these
3. In a kinematic chain, a quaternary joint is equivaler	nt to -	
(a) one binary joint	(b)	two binary joints
(c) three binary joints	(d)	four binary joints
4. The Grubler's criterion for determining the degree motion is -	es of	freedom (n) of a mechanism having plane
(a) (a) $n = (1-1)-j$	(b)	n = 2 (1 - 1) - 2j
(c) $n = 3(1-1)-2j$	(d)	n = 4(1-1) - 3j
Where $l = Number of links$, and $j = Number of bina$	ary jo	pints.
5. In a four bar chain or quadric cycle chain -		
(a) each of the four pairs is a turning pair	(b)	one is a turning pair and three are sliding pairs
(c) three are turning pairs and one is sliding pair	(d)	each of the four pairs is a sliding pair
6. The size of a cam depends upon -		
(a) base circle	(b)	pitch circle
(c) prime circle	(d)	pitch curve
7. The angle between the direction of the follower mo	tion	and a normal to the pitch curve is called -
(a) pitch angle	(b)	prime angle
(c) base angle	(d)	pressure angle
8. The cam follower generally used in automobile engi	ines i	s -
(a) knife edge follower	(b)	flat faced follower
(c) spherical faced follower	(d)	roller follower
9. The cam follower extensively used in air-craft engin	nes is	:-

(a) knife edge follower

(c) spherical faced follower

(b) flat faced follower(d) roller follower

10.		ch of the following displacement diagrams shou follower mechanism?	ld be	chosen for better dynamic performance of a
	(a)	simple harmonic motion	(b)	parabolic motion
	(c)	cycloidal motion	(d)	none of these
11.		two parallel and coplanar shafts are connected . This arrangement is called -	by g	gears having teeth parallel to the axis of the
	(a)	spur gearing	(b)	helical gearing
	(c)	bevel gearing	(d)	spiral gearing
12.	An in	naginary circle which by pure rolling action, gi	ves t	he same motion as the actual gear, is called-
	(a)	addendum circle	(b)	dedendum circle
	(c)	pitch circle	(d)	clearance circle
13.	The s	size of a gear is usually specified by -		
		pressure angle	(b)	circular pitch
	` '	diametral pitch	` ′	pitch circle diameter
14.	. ,	nodule is the reciprocal of -	()	•
		diametral pitch	(b)	circular pitch
	` '	pitch diameter	` ′	none of these
15.	` ′	e gears are used for -	()	
13.		great speed reduction	(b)	equal speed
	` '	minimum axial thrust	` ′	minimum backlash
16	. ,	contact ratio for gears is -	(4)	
10.		zero	(b)	less than one
	` '	greater than one	` /	infinity
17	` '		(u)	initiaty
1/.		lute profile is preferred to cycloidal because -		
	` '	the profile is easy to cut only one curve is required to cut		
	` /	1	n ha	out occurately
		the rack has straight line profile and hence ca none of these	11 00	cut accuratery
10	` /		1. '	14
10.	-	product of the diametral pitch and circular pitc		•
	(a)		(d)	1/p
10	(c)		(u)	25
19.		ch is the incorrect relationship of gears?	(1.)	M. J. D.C. D.N
		Circular pitch × Diametral pitch = p	` ′	Module = P.C.D/No. of teeth
		Dedendum = 1.157 module	` /	Addendum = 2.157 module
20.		speed ratio of 100, smallest gear box is obtai	ned l	oy using -
	` '	a pair of spur gears	_	
		a pair of helical and a pair of spur gear compo		
	` '	a pair of bevel and a pair of spur gear compo		
		a pair of helical and a pair of worm gear comp	poun	ded
21.		rain value of a gear train is -		
	` '	equal to velocity ratio of a gear train	` ′	reciprocal of velocity ratio of a gear train
	(c)	always greater than unity	(d)	always less than unity

22.	. When the axes of first and last gear are co-axial, then gear train is known as -				
	(a) simple gea	nr train	(b)	compound gear train	
	(c) reverted g	ear train	(d)	epicyclic gear train	
23.	In a clock mech	anism, the gear train used to conne	ct mi	nute hand to hour hand, is -	
	(a) epicyclic g	gear train	(b)	reverted gear train	
	(c) compound	l gear train	(d)	simple gear train	
24.	A differential ge	ear in an automobile is a -			
	(a) simple gea	nr train	(b)	epicyclic gear train	
	(c) compound	l gear train	(d)	none of these	
25.	A differential ge	ear in automobiles is used to -			
	(a) reduce sp	eed	(b)	assist in changing speed	
	(c) provide je	rk-free movement of vehicle	(d)	help in turning	
26.	The maximum f	luctuation of energy is the -			
	(a) sum of ma	ximum and minimum energies			
	(b) difference	between the maximum and minimu	m en	ergies	
	(c) ratio of the	e maximum energy and minimum en	nergy		
	(d) ratio of the	e mean resisting torque to the worl	k don	e per cycle	
27.	In a turning mon	nent diagram, the variations of energ	gy abo	ove and below the mean resisting torque line	
	is called -				
	(a) fluctuation			maximum fluctuation of energy	
	(c) coefficient	t of fluctuation of energy	(d)	none of these	
28.		maximum fluctuation of speed to the	he me	ean speed is called -	
	(a) fluctuation	=		maximum fluctuation of speed	
	(c) coefficien	t of fluctuation of speed	(d)	none of these	
29.		Watt's governor (in metres) in equa	al to -		
	(a) $8.95/N^2$		` '	$89.5/N^2$	
	(c) $895/N^2$		(d)	$8950/N^2$	
30.	A Hartnell gove	rnor is a -			
	(a) pendulum	type governor	(b)	spring loaded governor	
	(c) dead weig	ht governor	(d)	inertia governor	
31.	A governor is sa	aid to be hunting, if the speed of the	e engi	ne -	
	(a) remains co	onstant at the mean speed			
	(b) is above the	•			
	(c) is below the	=			
	(d) fluctuates	continuously above and below the	mear	speed	
32.	Isochronism in a	a governor is desirable when -			
	(a) the engine	e operates at low speeds	(b)	the engine operates at high speeds	
	(c) the engine	e operates at variable speeds	(d)	one speed is desired under one load	
33.	The balancing o	f rotating and reciprocating parts o	f an e	engine is necessary when it runs at -	
	(a) slow spee	d	(b)	medium speed	

(d) none of these

(c) high speed

34.		der to have a complete balance of the several re	evolv	ing 1	nasse	es in different planes -
	()	the resultant force must be zero				
		the resultant couple must be zero				
	` '	both the resultant force and couple must be ze	ero			
	(d)	none of these				
35.	The v	wheels of a moving car possess -				
	(a)	potential energy only	(b)	kine	etic er	nergy of translation only
	(c)	kinetic energy of rotation only	(d)	kine	tic en	ergy of translation and rotation both
36.	When	n a particle moves along a straight path, then the	he pa	rticle	has ·	-
	(a)	tangential acceleration only	(b)	cent	ripeta	al acceleration only
	(c)	both tangential and centripetal acceleration	(d)	non	e of t	hese
37.		ording to Aronhold Kennedy's theorem, if the naneous centres will lie on a -	ree b	odie	s mo	ve relatively to each other, their
	(a)	straight line	(b)	para	bolic	curve
	(c)	ellipse			e of t	
38.	The i	nstantaneous centres which vary with the confi	igura	tion (of the	mechanism, are called -
		permanent instantaneous centres	Ü			
	(b)	fixed instantaneous centres				
	(c)	neither fixed nor permanent instantaneous cen	itres			
	(d)	none of these				
39.	The	lirection of linear velocity of any point on a link	with	resp	ect to	another point on the same link is-
	(a)	parallel to the link joining the points	(b)	perp	endi	cular to the link joining the points
	(c)	at 45° to the link joining the points	(d)	non	e of t	hese
40.	The	coriolis component of acceleration is taken into	o acc	ount	for -	
	(a)	slider crank mechanism	(b)	four	bar c	hain mechanism
	(c)	quick return motion mechanism	(d)	non	e of t	hese
41.	In a g	gib and cotter joint, the gib and cotter are subj	ecte	d to -		
	_	single shear only				near only
	(c)	single shear and crushing	(d)	dou	ble sł	near and crushing
42.	Matc	h List I (Items in joints) with List II (Type of	failu	re) a	nd se	elect the correctanswer using the
		s given below the Lists:		ŕ		_
		<u>List I</u>				<u>List II</u>
	A.	Bolts in bolted joints of engine cylinder cover	plate	e	1.	Double transverse shear
		Cotters in cotter joint			2.	
		Rivets in lap joints			3.	Single transverse shear
		Bolts holding two flanges in a flange coupling			4.	Tension
	()	4 1 3 2	` /	4 2		
	()	3 1 4 2	` /	3 2		
43.	actin	otter joint, the width of the cotter at the centre g on the cotter is 60 kN. What is the shearing s				
	()	120 N/mm^2	` /		N/m	
	(c)	75 N/mm ²	(d)	50 N	V/mm	1^2
44.	In the	e assembly design of shaft, pulley and key, the	weal	kest 1	neml	per is -
	(a)	pulley	(b)	key		
	(c)	shaft	(d)	non	e	

- **45.** A spur gear transmitting power is connected to the shaft with a key of rectangular section. The type (s) of stresses developed in the key is fare.
 - (a) shear stress alone

(b) bearing stress alone

(c) both shear and bearing stresses

- (d) shearing, bearing and bending stresses
- **46.** Consider the following statements:

A splined shaft is used for

- 1. transmitting power
- 2. holding a flywheel rigidly in position
- 3. moving axially the gear wheels mounted on it
- 4. mounting V-belt pulleys on it. Of these statements
- (a) 2 and 3 are correct

(b) 1 and 4 are correct

(c) 2 and 4 are correct

- (d) 1 and 3 are correct
- **47.** In the welded joint shown in the given figure, if the weld at B has thicker fillets than that at A then the load carrying capacity P, of the joint will -

(a) increase

(b) decrease

(c) remain unaffected

- (d) exactly get doubled
- **48.** The following two figures show welded joints (x x x x x indicates welds), for the same load and same dimensions of plate and weld. The joint shown in -

- (a) fig. I is better because the weld is in shear and the principal stress in the weld is not in line with P
- (b) fig. I is better because the load transfer from the tie bar to the plate is not direct
- (c) fig. II is better because the weld is in tension and safe stress of weld in tension is greater than that in shear
- (d) fig. II is better because it has less stress concentration
- 49. The bolts in a rigid flanged coupling connecting two shafts transmitting power are subjected to
 - (a) shear force and bending moment
- (b) axial force

(c) torsion

- (d) torsion and bending moment
- **50.** The creep in a belt drive is due to the -
 - (a) material of the pulleys
 - (b) material of the belt
 - (c) unequal size of the pulleys
 - (d) unequal tension on tight and slack sides of the belt

51.			-				elt is 1%, that between belt and follower is then thevelocity ratio of the drive will be -
		0.99					0.98
	` ′	0.97				` '	0.96
5 2	()		+ i.a. a. b. a.l.+ .d	mirro from o		(4)	
52.	-	ley and bel		rive iroin a	l -	(1.)	
		cylindrical	_			(b)	turning pair
	(c)	rolling pair				(d)	sliding pair
53.	Centi	ifugal tensi	on in belts	is -			
	(a)	useful beca	ause it mair	ntains some	tensi	on even whe	en no power is transmitted
	(b)	not harmfu	ıl because i	t does not t	ake p	art in power	transmission
	(c)	harmful be	cause it inc	creases belt	tensi	on and redu	ces the power transmitted
	(d)	a hypothet	ical phenor	menon and	does 1	not actually	exist in belts
54.	What	is the effic	iency of a s	elf-locking	powe	er screw?	
		70%	J		71		60%
	` ′	55%				()	< 50 %
<i>5 5</i>	()		_1-i i		:4:	()	
55.			_	•	it is es		helix angle is -
		larger than				` ′	smaller than friction angle
	(c)	equal to fri	ction angle			(d)	such as to give maximum efficiency in lifting
56.		of number o		•	_	_	we is 2.3, the module of teeth is 2.0 mm and the centre distance between pinion and the
	(a)	49.5 mm				(b)	99 mm
	(c)	148.5 mm				(d)	198 mm
57.			face above	the pitch s	urfac	e of the gear	tooth is termed as -
	(a)	addendum				(b)	dedendum
	(c)	flank				(d)	face
58.		h List I (Te v the lists:	rms) with l	List II (Def	ïnitio	n) and selec	et the correct answer using the codes given
		List I				List II	
	A.	Module			1.	Radial dist	ance of a tooth from the pitch circle to the
	В.	Addend	ım		2.		ance of a tooth from the pitch circle to the
	C.	Circular	nitch		3.		the circumference of the pitch circle from a
	C.	Circular	piten		3.		ne tooth to the corresponding point on the
					4.		oitch circle diameter in mm to the number of
	Code	e: A	В	C			
	(a)	4	1	3			
	(b)	4	2	3			
	(c)	3	1	2			
	(d)	3	2	4			
	(4)	5	-	•			

_	ed while the other gear has motion is of fixed gear, then the gear training		two types i.e. rotary about its own axis and
(a) Epicyclic ge			Reverted gear train
(c) Kepler gear	r train	(d)	None of these
60. Which one of the	following pairs is not correctly n	natche	d?
(a) Positive dri	ive Belt drive		
(b) High veloci	ity ratio Worm gearing		
(c) To connect	non-parallel and non- intersecting	ng sha	fts Spiral gearing
(d) Diminished	d noise and smooth operation	Heli	cal gears
61. Which among the	following is the condition for ma	ıximu	m acceleration in Hooke's joint?
(a) $\cos 2\theta \approx (2 - \cos 2\theta)$	$2\sin 2\alpha/2 + \sin 2\alpha)$	(b)	$\cos\theta \approx (2\sin 2\alpha/2 - \sin 2\alpha)$
(c) $\cos 2\theta \approx (2)$	$2\sin 2\alpha/2 - \sin 2\alpha$	(d)	$\cos 2\theta \approx (\sin 2\alpha/2 - \sin 2\alpha)$
62. For high speed en	gines, the cam follower should n	nove v	vith.
(a) uniform velo	ocity	(b)	simple harmonic motion
(c) uniform acc	celeration and retardation	(d)	cycloidal motion
63. In a coupling rod	of a locomotive, each of the fou	ır pair	s is a pair.
(a) Sliding		(b)	Turning
(c) Rolling		(d)	Screw
	h for a body vibrating under stead will tend to approach -	ly state	e vibrations, the phase angle for all values of
(a) 0°		(b)	90°
(c) 180°		(d)	360°
65. In a circular arc caupon -	am with roller follower, the accel	eratio	n in any position of the lift will depend only
-	tal angle of lift, minimum radius o	of cam	and cam speed
			re of circular arc and roller diameter
(c) mass of can	n follower linkage, spring stiffne	ss and	cam speed
(d) total lift, ce	entre of gravity of the cam and ca	m spe	ed
66. The pair is known	n as a higher pair, when the relati	ve mo	tion between the elements is -
(a) turning only	r	(b)	sliding only
(c) rolling only		(d)	partly turning and partly sliding
67. In vibration isolating if W/W_n is	ion system, the transmissibility wi	ll be e	qual to unity, for all values of damping factor,
(a) equal to one	e	(b)	equal to square root 2
(c) less than sq	juare root 2	(d)	greater than square root 2
	•		be balanced by a single mass m_2 attached in $e r_1$ and r_2 are the radii of rotation of m_1 and
(a) $m_1 r_2 = m_2 r_1$		(b)	$\mathbf{m}_1 \mathbf{r}_1 = \mathbf{m}_2 \mathbf{r}_2$
(c) $m_1 m_2 = r_1 r_2$		(d)	none of these

69.	Scoto	ch yoke mechanism is the inversion of		
	(a)	Single slider kinematic chain	(b)	Double slider kinematic chain
	(c)	Four bar chain	(d)	None of these
70.	Watt	's mechanism is based on		
	(a)	inversions of single slider chain mechanism	(b)	inversions of double slider chain mechanism
	(c)	inversions of four bar chain mechanism	(d)	inversions of five bar chain mechanism
71.	A ma	terial with identical properties in all directions	is kr	nown as -
	(a)	homogeneous	(b)	isotropic
	(c)	elastic	(d)	none of these
72.	Poiss	son's ratio is defined as ratio of -		
	(a)	axial strain to transverse strain	(b)	transverse strain to axial strain
	(c)	shear strain to axial strain	(d)	axial strain to shear strain
73.	The 1	imit up to which the stress is linearly proportion	nal to	o strain is limit.
	(a)	elastic	(b)	plastic
	(c)	ultimate	(d)	rupture
74.	The	stress at which elongation of a material is qu	ite la	arge as compared to the increase in load is
	know	vn as -		
	(a)	ultimate point	(b)	yield point
	(c)	elastic limit	(d)	rupture point
75.	The b	bulk modulus of a material having $E = 200 G$	Pa an	dG = 80 GPa is -
	(a)	233.3 GPa	(b)	133.3 GPa
	(c)	250 GPa	(d)	160 GPa
76.		rmation of a bar under its own weight ise weight of the body applied at the lower end.		_ the deformation due to a direct load equal
	(a)	double	(b)	four times
	(c)	half	(d)	equal to
77.	The	ratio of linear stress to linear strain is known a	s -	
	(a)	bulk modulus	(b)	modulus of rigidity
	(c)	Young's modulus	(d)	Poission's ratio
78.	Facto	or of safety is defined as ratio of -		
	(a)	ultimate stress to allowable stress	(b)	ultimate stress to yield stress
	(c)	allowable stress to ultimate stress	(d)	allowable stress to yield stress
79.	In cas	se of biaxial stresses, the maximum value of s	hears	stress is -
	(a)	difference of normal stresses	(b)	half the difference of normal stresses
	(c)	sum of normal stresses	(d)	half the sum of normal stresses
80.	In a N	Mohr's circle, the radius gives the value of -		
		minimum shear stress	(b)	maximum normal stress
	(c)	minimum normal stress	(d)	maximum shear stress

81.	Modulus of resilience is -		
	(a) percentage of elongat	ion of an elastic body	
	(b) strain energy stored in	n the elastic body	
	(c) strain energy per unit	volume of the elastic body	
	(d) None of these		
82.	Strain energy stored in a bo	dy due to suddenly applied l	oad compared to when applied slowly is -
	(a) twice	(b)	four times
	(c) eight times	(d)	half
83.	The point of contraflexure l	ies where -	
	(a) shear force changes si	ign (b)	bending moment is zero or changes sign
	(c) shear force is zero	(d)	bending moment is maximum
84.	The variation of shear force	e due to a uniformly distribut	ed load is by -
	(a) cubic law	(b)	parabolic law
	(c) linear law	(d)	uniform law
85.	A simply supported beam of	carries a couple at a point on	its span, the shear force -
	(a) varies by cubic law	(b)	varies by parabolic law
	(c) varies linearly	(d)	is uniform throughout
86.	At the point of application	of a point load on a beam the	ere is -
	(a) maximum bending mo	ment	
	(b) sudden change of shap	pe of bending moment diagra	nm
	(c) maximum deflection		
	(d) point of contraflexure		
87.	In a transversally loaded be	am, the maximum tensile str	ess occurs at the -
	(a) top edge	(b)	bottom edge
	(c) neutral axis	(d)	none of these
88.	A beam is said to be loaded	in pure bending if -	
	(a) shear force and bending	ng moment are uniform throu	ighout
		l bending moment is uniform	_
		ut bending moment is unifor	n throughout
	(d) None of these		
89.	Shear centre is the point in in the beam	or outside a section throug	th which the shear force applied produces
	(a) only twisting	(b)	only bending
	(c) twisting and bending	(d)	no twisting and bending
90.	The nature of shear stress d	istribution in a rectangular b	eam is -
	(a) uniform	(b)	linear
	(c) parabolic	(d)	elliptic
91.	The flexural rigidity of a bea	am is -	
	(a) E/I	(b)	EI
	(c) I/E	(d)	E^2I

92.	Thre	e-moment theorem for continuous beams was	forw	varded by -
	(a)	Bernoulli	(b)	Clapeyron
	(c)	Castigliano	(d)	Maxwell
93.		beam having a point load at the midspan, the ly supported to when they are fixed is -	e rat	io of the deflection when the two ends are
	(a)	2	(b)	3
	(c)	4	(d)	5
94.	The	variation of bending stress in a curved beam is	-	
	(a)	linear	(b)	parabolic
	(c)	hyperbolic	(d)	cubic
95.	Mag	nitude of shear stress induced in a shaft due to	appl	ied torque varies from -
	(a)	maximum at centre to zero at circumference		
	(b)	maximum at centre to minimum (not-zero) at	circu	mference
	(c)	zero at centre to maximum at circumference		
	(d)	Minimum (not zero) at centre to maximum at	circu	mference
96.	A so	id shaft of same cross-sectional area and of sa	me n	naterial as that of a hollow shaft can resist -
	(a)	less torque	(b)	more torque
	(c)	equal torque	(d)	none of these
97.	Leaf	springs are subjected to -		
	(a)	tensile stress	(b)	compressive stress
	(c)	shear stress	(d)	bending stress
98.	Wide	ely used springs in automobile industry are -		
	(a)	flat spiral springs	(b)	leaf springs
	(c)	closely-coiled helical springs	(d)	open-coiled helical springs
99.	Rank	tine's formula is applicable to -		
	(a)	long columns	(b)	short columns
	(c)	both of these	(d)	none of these
100.	The l	buckling load for a given material depends upo	n -	
	(a)	Poisson's ratio and slenderness ratio	(b)	Poisson's ratio and modulus of elasticity
	(c)	Slenderness ratio and cross-sectional area	(d)	Slenderness ratio and modulus of elasticity

* * * * * * *