## **MIZORAM PUBLIC SERVICE COMMISSION**

## **TECHNICAL COMPETITIVE EXAMINATIONS FOR JUNIOR GRADE OF** MIZORAM ENGINEERING SERVICE (M.E.S.) UNDER PUBLIC WORKS DEPARTMENT, **GOVERNMENT OF MIZORAM, MARCH, 2020**

## **CIVIL ENGINEERING PAPER - I**

Time Allowed : 3 hours

**SECTION - A** (Multiple Choice questions)

(100 Marks)

All questions carry equal mark of 2 each. Attempt all questions.

This Section should be answered only on the **<u>OMR Response Sheet</u>** provided.

- 1. The Le Chatelier apparatus is used to determine
  - (a) soundness of cement (b) fineness of cement
  - (c) setting time of cement

2. For mass concrete work such as a dam, the recommended type of cement is

- (a) Ordinary Portland cement
- (c) Low-heat Portland cement
- 3. What will be the weight of fine aggregates for the particular concrete mix design given below?

|                   | Weight                | Specific gravity |
|-------------------|-----------------------|------------------|
| Cement            | 400 kg/m <sup>3</sup> | 3.2              |
| Fine aggregates   | -                     | 2.5              |
| Coarse aggregates | $1040 \text{ kg/m}^3$ | 2.6              |
| Water             | 200 kg/m <sup>3</sup> | 1                |
|                   |                       |                  |

- (a)  $528 \text{ kg/m}^3$ (b)  $688 \text{ kg/m}^3$ (c)  $570 \text{ kg/m}^3$ (d)  $1000 \text{ kg/m}^3$
- 4. For limit state of collapse, the partial safety factors recommended by IS 456:2000 for estimating the design strength of concrete and reinforcing steel are respectively
  - (a) 1.15 and 1.5 (b) 1.0 and 1.0
  - (c) 1.5 and 1.15 (d) 1.5 and 1.0
- 5. The deformation in concrete due to sustained loading is
  - (b) hydration (a) creep
  - (c) segregation (d) shrinkage
- 6. The effective length of a column of actual length L, effectively held in position and restrained in direction at one end, but is free at the other end is

| (a) | 2L | (b) L |  |
|-----|----|-------|--|
|     |    |       |  |

(d) 1.5L (c) 0.67L

Full Marks: 200

- (d) compressive strength of cement
- (b) Quick setting cement
- (d) Portland Pozzolona cement

7. Match List-I with List-II and select the correct answer using the codes given below the lists:

|      |                |       |   |   |    | 0              |
|------|----------------|-------|---|---|----|----------------|
|      | List-I         |       |   |   |    | <u>List-II</u> |
| А.   | Serviceability | 7     |   |   | 1. | Sliding        |
| B.   | Shear key      |       |   |   | 2. | Deflection     |
| C.   | Shrinkage      |       |   |   | 3. | Cracking       |
| D.   | Concrete spal  | lling |   |   | 4. | Corrosion      |
| Code | es:            |       |   |   |    |                |
|      | А              | В     | С | D |    |                |
| (a)  | 1              | 3     | 4 | 2 |    |                |
| (b)  | 2              | 1     | 3 | 4 |    |                |
| (c)  | 1              | 3     | 2 | 4 |    |                |
| (d)  | 2              | 1     | 4 | 3 |    |                |

8. Which one of the following is a long term pre-stress loss in a pre-stressed member?

- (a) Loss due to elastic shortening (b) Loss due to friction
- (c) Loss due to relaxation of strands (d) Loss due to anchorage slip

9. The material that exhibits the same elastic properties in all directions at a point is said to be

- (a) homogeneous (b) orthotropic
- (c) viscoelastic (d) isotropic
- **10.** For an isotropic material, the relationship between Young's modulus (*E*), shear modulus (*G*) and Poisson's ratio (*v*) is given by

(a) 
$$G = \frac{E}{2(1+v)}$$
  
(b)  $E = \frac{G}{2(1+v)}$   
(c)  $G = \frac{E}{(1+2v)}$   
(d)  $G = \frac{E}{2(1-2v)}$ 

11. For a given shear force across a symmetrical I section, the intensity of shear stress is maximum at

- (a) extreme fibres
- (b) centroid of the section
- (c) at the junction of the flange and the web but on the web
- (d) at the junction of the flange and the web but on the flange
- **12.** A long shaft of diameter 'd' is subjected to twisting moment T at its ends. The maximum normal stress at its cross-section is

(a) Zero  
(b) 
$$\frac{16T}{\pi d^3}$$
  
(c)  $\frac{32T}{\pi d^3}$   
(d)  $\frac{64T}{\pi d^3}$ 

- 13. The radius of Mohr's circle is zero when the state of stress is such that
  - (a) shear stress is zero
  - (b) there is pure shear
  - (c) there is no shear stress but identical direct stresses in two mutually perpendicular directions
  - (d) there is no shear stress but equal direct stresses, opposite in nature, in two mutually perpendicular directions

14. A thin hollow cylinder of diameter 'd', length 'L' and thickness 't' is subjected to an internal pressure 'p'. The hoop stress in the cylinder is

| (a) | $\frac{\mathrm{pd}}{\mathrm{8t}}$ | (b) | $\frac{\text{pd}}{4\text{t}}$ |
|-----|-----------------------------------|-----|-------------------------------|
| (c) | $\frac{\text{pd}}{2\text{t}}$     | (d) | $\frac{\text{pd}}{\text{t}}$  |

**15.** Influence line for redundant structures can be obtained by

- (a) Castigliano's theorem (b) Muller Breslau principle
- (c) Unit load theorem (d) Maxwell-Betti's theorem

16. Match List-I with List-II and select the correct answer using the codes given below the lists:

- List-IList-IIA. Slope deflection method1. Force method
- B. Moment distribution method
- C. Method of three moments
- D. Castigliano's second theorem

Codes:

|           | • |
|-----------|---|
| (a) 1 2 1 | 2 |
| (b) 1 1 2 | 2 |
| (c) 2 2 1 | 1 |
| (d) 2 1 2 | 1 |

17. For the truss shown in the Figure, the force in the member QR is



18. Choose the correct statement for the frame given below.



- (a) stable and statically determinate
- (c) stable and statically indeterminate
- (b) unstable and statically determinate
- (d) unstable and statically indeterminate

- 1. Force method
- 2. Displacement method

- **19.** The unit of moment of inertia of an area is
  - (a)  $kg-m^2$  (b)  $kg-m-s^2$ (c)  $kg/m^2$  (d)  $m^4$

20. The linear velocity of a body rotating at v rad/s along a circular path of radius 'r' is given by

- (a) v/r (b) vr(c)  $v^2/r$  (d)  $v^2r$
- 21. The velocity of a body on reaching the ground from a height 'h' is
  - (a)  $2\sqrt{gh}$  (b)  $\sqrt{gh}$ (c)  $\sqrt{2gh}$  (d)  $2g\sqrt{h}$

**22.** When a bar is subjected to a change of temperature and its deformation is prevented, the stress induced in the bar is

- (a) tensile stress (b) compressive stress
- (c) shear stress (d) thermal stress
- 23. The shear stress at the outermost fibres of a circular shaft under torsion is
  - (a) zero (b) minimum
  - (c) maximum (d) infinity
- 24. A simply supported beam of span *l* carries over its full span a load varying linearly from zero at both ends to *w*/unit length at midspan, then maximum bending moment is equal to
  - (a)  $\frac{wl^2}{8}$  (b)  $\frac{wl^2}{4}$ (c)  $\frac{wl^2}{12}$  (d)  $\frac{wl^2}{10}$

**25.** The bending moment for a certain portion of the beam is constant. For that section, shear force would be

- (a) zero (b) increasing
- (c) decreasing (d) constant
- 26. Number of unknowns to be determined in the stiffness method is equal to
  - (a) static indeterminacy (b) kinematic indeterminacy
  - (c) sum of (a) and (b) (d) none of these

**27.** The shape of cable under horizontal uniformly distributed load is

- (a) parabolic (b) catenary
- (c) circular (d) triangular
- 28. In the limit state design of pre-stressed concrete structures, strain distribution is assumed to be
  - (a) linear (b) non-linear
  - (c) parabolic (d) cubic parabolic
- **29.** For a reinforced concrete section, the shape of shear stress diagram is
  - (a) wholly rectangular (b) wholly parabolic
  - (c) wholly linear (d) rectangular and parabolic

| 30. | If $s_{cbc}$ is the permissible compressive stress in flexu                      | ıre, tl | ne modular ratio is of the order of               |
|-----|----------------------------------------------------------------------------------|---------|---------------------------------------------------|
|     | 280                                                                              |         | 200                                               |
|     | (a) $3\sigma_{cbc}$                                                              | (b)     | $3\sigma_{cbc}$                                   |
|     | (c) 1                                                                            | (d)     | 10                                                |
| 31. | Which of the following concepts is the basis princip                             | ole of  | structural design based?                          |
|     | (a) Weak column and strong beam                                                  | (b)     | Equally strong column-beam                        |
|     | (c) Strong column and weak beam                                                  | (d)     | None of these                                     |
| 32. | Shear span is defined as the zone where                                          |         |                                                   |
|     | (a) bending moment is zero                                                       | (b)     | shear force is zero                               |
|     | (c) bending moment is constant                                                   | (d)     | shear force is constant                           |
| 33. | The maximum strain in concrete at the outermost con member is                    | npres   | ssion fibre in the limit state design of flexural |
|     | (a) 0.0020                                                                       | (b)     | 0.0035                                            |
|     | (c) 0.0050                                                                       | (d)     | 0.0065                                            |
| 34. | Ratio of plastic section modulus to elastic section depth $d$                    | mod     | ulus for rectangular section of width b and       |
|     | (a) 1                                                                            | (b)     | 2                                                 |
|     | (c) 1.5                                                                          | (d)     | 2.5                                               |
| 35. | Shape factor is the property which depends on                                    |         |                                                   |
|     | (a) ultimate stress of material                                                  | (b)     | yield stress of material                          |
|     | (c) geometry of the section                                                      | (d)     | All of these                                      |
| 36. | The most efficient and economical section used as                                | a stee  | el beam is                                        |
|     | (a) I section                                                                    | (b)     | Circular section                                  |
|     | (c) H section                                                                    | (d)     | Rectangular section                               |
| 37. | Bearing stiffeners are provided at the                                           |         |                                                   |
|     | (a) support                                                                      | (b)     | point of application of concentrated load         |
|     | (c) both (a) & (b)                                                               | (d)     | none of these                                     |
| 38. | To minimise the total cost of a roof truss, the ratio                            | ofco    | st of truss to cost of purlins should be          |
|     | (a) 1                                                                            | (b)     | 2                                                 |
|     | (c) 3                                                                            | (d)     | 4                                                 |
| 39. | Some steels do not show yield plateau and show cor<br>can be obtained by drawing | ntinu   | ous curve. For such steels, the yield strength    |
|     | (a) initial secant modulus                                                       | (b)     | 0.2% offset of strain                             |
|     | (c) 0.1% offset of strain                                                        | (d)     | none of these                                     |
| 40. | For the analysis of thick cylinders, the theory applied                          | cable   | is                                                |
|     | (a) Lame's theory                                                                | (b)     | Courbon's theory                                  |
|     | (c) Rankine's theory                                                             | (d)     | Poisson's theory                                  |
| 41. | For complete hydration of cement the w/c ratio need                              | eded    | is                                                |
|     | (a) less than 0.25                                                               | (b)     | between 0.25 and 0.35                             |
|     | (c) between 0.35 and 0.45                                                        | (d)     | between 0.45 and 0.60                             |
|     |                                                                                  |         |                                                   |

| 42.                      | Whi                                                                                                  | ch one of the following aggregate gives the max                                                                                                                                                                                                                               | imun                                                       | n strength in concrete?                                                                                                                                                                                    |
|--------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | (a)                                                                                                  | Rounded aggregate                                                                                                                                                                                                                                                             | (b)                                                        | Elongated aggregate                                                                                                                                                                                        |
|                          | (c)                                                                                                  | Flaky aggregate                                                                                                                                                                                                                                                               | (d)                                                        | Cubical aggregate                                                                                                                                                                                          |
| 43.                      | Vibr                                                                                                 | ators are used for                                                                                                                                                                                                                                                            |                                                            |                                                                                                                                                                                                            |
|                          | (a)                                                                                                  | compacting concrete                                                                                                                                                                                                                                                           | (b)                                                        | proper mixing of concrete                                                                                                                                                                                  |
|                          | (c)                                                                                                  | Removing excess water from concrete                                                                                                                                                                                                                                           | (d)                                                        | Obtaining smooth surface                                                                                                                                                                                   |
| 44.                      | In a coar                                                                                            | concrete mix, if the maximum size of coarse a se aggregate should be                                                                                                                                                                                                          | ıggre                                                      | gate is increased, the proportion of fine to                                                                                                                                                               |
|                          | (a)                                                                                                  | increased                                                                                                                                                                                                                                                                     | (b)                                                        | decreased                                                                                                                                                                                                  |
|                          | (c)                                                                                                  | kept the same                                                                                                                                                                                                                                                                 | (d)                                                        | not dependent on size of aggregates                                                                                                                                                                        |
| 45.                      | The                                                                                                  | crushing strength of a good building stone shou                                                                                                                                                                                                                               | ıld be                                                     | e at least                                                                                                                                                                                                 |
|                          | (a)                                                                                                  | 50 MPa                                                                                                                                                                                                                                                                        | (b)                                                        | 100 MPa                                                                                                                                                                                                    |
|                          | (c)                                                                                                  | 150 MPa                                                                                                                                                                                                                                                                       | (d)                                                        | 200 MPa                                                                                                                                                                                                    |
| 46.                      | The                                                                                                  | number of bricks required per cubic metre of b                                                                                                                                                                                                                                | rick                                                       | masonry is                                                                                                                                                                                                 |
|                          | (a)                                                                                                  | 400                                                                                                                                                                                                                                                                           | (b)                                                        | 450                                                                                                                                                                                                        |
|                          | (c)                                                                                                  | 500                                                                                                                                                                                                                                                                           | (d)                                                        | 550                                                                                                                                                                                                        |
| 47.                      | The                                                                                                  | strength of timber is maximum in a direction                                                                                                                                                                                                                                  |                                                            |                                                                                                                                                                                                            |
|                          |                                                                                                      | 6                                                                                                                                                                                                                                                                             |                                                            |                                                                                                                                                                                                            |
|                          | (a)                                                                                                  | parallel to grains                                                                                                                                                                                                                                                            | (b)                                                        | perpendicular to grains                                                                                                                                                                                    |
|                          | (a)<br>(c)                                                                                           | parallel to grains<br>45 degrees to grains                                                                                                                                                                                                                                    | (b)<br>(d)                                                 | perpendicular to grains<br>30 degrees to grains                                                                                                                                                            |
| 48.                      | (a)<br>(c)<br>'The<br>and t                                                                          | parallel to grains<br>45 degrees to grains<br>resultant force of a system is zero, the vector s<br>he momentum of the system remains constant'                                                                                                                                | (b)<br>(d)<br>um o<br>. This                               | perpendicular to grains<br>30 degrees to grains<br>f impulses of all the external forces is zero,<br>s principle is called the                                                                             |
| 48.                      | (a)<br>(c)<br>'The<br>and t<br>(a)                                                                   | parallel to grains<br>45 degrees to grains<br>resultant force of a system is zero, the vector s<br>he momentum of the system remains constant'<br>principle of conservation of energy                                                                                         | (b)<br>(d)<br>um o<br>. This<br>(b)                        | perpendicular to grains<br>30 degrees to grains<br>f impulses of all the external forces is zero,<br>principle is called the<br>d'Alembert principle                                                       |
| 48.                      | (a)<br>(c)<br>'The<br>and t<br>(a)<br>(c)                                                            | parallel to grains<br>45 degrees to grains<br>resultant force of a system is zero, the vector s<br>he momentum of the system remains constant'<br>principle of conservation of energy<br>work-energy principle                                                                | (b)<br>(d)<br>um o<br>. This<br>(b)<br>(d)                 | perpendicular to grains<br>30 degrees to grains<br>f impulses of all the external forces is zero,<br>s principle is called the<br>d'Alembert principle<br>principle of conservation of momentum            |
| <b>48.</b><br><b>49.</b> | <ul> <li>(a)</li> <li>(c)</li> <li>'The and t</li> <li>(a)</li> <li>(c)</li> <li>A land t</li> </ul> | parallel to grains<br>45 degrees to grains<br>resultant force of a system is zero, the vector s<br>he momentum of the system remains constant'<br>principle of conservation of energy<br>work-energy principle<br>rge force acting over a short period of time is ca          | (b)<br>(d)<br>um o<br>. This<br>(b)<br>(d)<br>alled        | perpendicular to grains<br>30 degrees to grains<br>f impulses of all the external forces is zero,<br>s principle is called the<br>d'Alembert principle<br>principle of conservation of momentum            |
| 48.<br>49.               | (a)<br>(c)<br>'The<br>and t<br>(a)<br>(c)<br>A lan<br>(a)                                            | parallel to grains<br>45 degrees to grains<br>resultant force of a system is zero, the vector s<br>he momentum of the system remains constant'<br>principle of conservation of energy<br>work-energy principle<br>ge force acting over a short period of time is ca<br>moment | (b)<br>(d)<br>um o<br>. This<br>(b)<br>(d)<br>alled<br>(b) | perpendicular to grains<br>30 degrees to grains<br>f impulses of all the external forces is zero,<br>s principle is called the<br>d'Alembert principle<br>principle of conservation of momentum<br>impulse |

- 6 -

- **50.** Resilience is
  - (a) recoverable strain energy
  - (c) total potential energy

- (b) shear strain energy
- (d) maximum strain energy

## <u>SECTION - B (Short answer type question)</u> (100 Marks)

All questions carry equal marks of 5 each.

This Section should be answered only on the **Answer Sheet** provided.

- 1. Explain the difference in the behaviour of one-way slabs and two-way slabs.
- 2. What is the purpose of a retaining wall? What are the different types of concrete retaining walls?
- 3. What are the different components of a roof truss? Name three types of roof truss.
- 4. Draw bending moment diagram of the beam shown below:



- 5. List some of the common defects associated with welds.
- 6. Describe main factors which affect permeability of concrete.
- 7. State five common defects in timber.
- 8. Define principal stress. Determine principal stress in an axially loaded circular bar of diameter 50 cm, with 5 kN axial force.
- 9. Discuss the stress strain characteristic of a ductile material.
- **10.** Explain field testing of cement.
- 11. Explain the factors affecting good orientation of a building.
- 12. Determine the reaction forces at A and B on the pin-connected structure as shown in Figure. Note B is pin-connected.



Figure

**13.** Determine the deflection at C using moment area method as shown in Figure. Take EI = constant.





14. Calculate the principal stress for the state of stress given below:

$$\sigma_{ij} = \begin{bmatrix} 0 & -75 & -55 \\ -75 & 0 & 65 \\ -55 & 65 & 0 \end{bmatrix}$$

15. Explain the difference between bearing and friction type bolts.

**16.** Locate the centroid of the section shown in Figure.



- 17. Construct influence line on a simply supported beam of span 10m taking regular interval of 2.5m for shear at 2.5m from left support of a beam.
- 18. Explain briefly bulking of fine aggregates with proper graph to justify your answer.
- 19. Define kinematic indeterminacy. Calculate the kinematic indeterminacy for a truss shown in Figure.



**20.** List out the assumptions in the limit state design for reinforced concrete.

\* \* \* \* \* \* \*