MIZORAM PUBLIC SERVICE COMMISSION

TECHNICAL COMPETITIVE EXAMINATIONS FOR JUNIOR GRADE OF MIZORAM ENGINEERING SERVICE (M.E.S.) UNDER PUBLIC HEALTH DEPARTMENT, GOVERNMENT OF MIZORAM, MARCH, 2019.

MECHANICAL ENGINEERING PAPER - I

Time Allowed: 3 hours FM: 200

SECTION - A (Multiple Choice questions)

(100 Marks)

		(100 Mui K	3)		
		All questions carry equal mark of 2	each.	Attempt all questions.	
		This Section should be answered only on the	ie <u>O</u> I	MR Response Sheet provided.	
1. The work done by a closed system in a reversible process is always that do irreversible process.				ess is always that done in an	
	(a)	less than or more than	(b)	equal to	
	(c)	less than	(d)	more than	
2. A piston-cylinder device initially contains air at 150 kPa and 27°C. At this state, the volume is 4 litre. The mass of the piston is such that a 350 kPa pressure is required to move it. The air is no heated until its volume has doubled. Determine the total heat transferred to the air.					
	(a)	747 kJ	(b)	757 kJ	
	(c)	767 kJ	(d)	777 KJ	
3.					
	(a)	$30^{\circ}C \leq \Delta T_e \leq 150^{\circ}C$	(b)	$5^{\circ}C \le \Delta T_e \le 30^{\circ}C$	
	(c)	$30^{\circ}C \le \Delta T_e \le 120^{\circ}C$	(d)	$\Delta T_e \ge 150 ^{\circ}C$	
4.	4. A composite wall has two layers of different materials having thermal conductivities of k_1 and k_2 . each layer has the same thickness, the equivalent thermal conductivity of the wall is				
		$k_1 k_2$	(b)	$\frac{(k_1 + k_2)}{k_1 k_2}$	
	(c)	$\frac{2k_1k_2}{(k_1+k_2)}$		$k_1 + k_2$	
5. Choose the correct statement among the following:					
	(a)				
(b) Mass remains same in an open system(c) The system boundaries are collapsible and expandable					

(a) Starts at 40° after bottom dead centre and ends at 30° before top dead centre

(b) Starts at 40° before bottom dead centre and ends at 30° after bottom dead centre

6. In a four stroke cycle petrol engine, the compression

(d) May start and end anywhere

(c) Starts at bottom dead centre and ends at top dead centre

7. Cavitation is caused by

	(a)	high velocity	(b)	low pressure	
	(c)	weak material	(d)	high pressure	
8.	press	the time required to close a valve gradually is (where L is the length of pipe and C = velocity of ressure wave)			
	(a)	$\frac{2L}{C}$	(b)	$\geq \frac{2L}{C}$	
	(c)	$> \frac{2L}{C}$	(d)	$> \frac{4L}{C}$	
9.	The t	otal energy developed by the hydraulic oil in a	syste	em is given as	
	` ′	(a) Total energy = (Potential energy + Pressure energy)			
	(b) Total energy = (Potential energy + Kinetic energy)				
	(c) Total energy = (Potential energy – Kinetic energy)				
	` /	None of these			
10.		is the Reynold's number, the coefficient of frict			
	(a)	$\frac{4}{R_e}$ $\frac{12}{R_e}$	(b)	$\frac{8}{R_e}$	
	. ,	K _e	` /	K _e	
	(c)	$\frac{12}{R}$	(d)	$\frac{16}{R_e}$	
		R_e	()	R_e	
11.	_	ending on the radiating properties, a body will			
	` '	p = 0, x = 0 and a = 1		p = 1, x = 0 and a = 0	
		p = 0, x = 1 and a = 0		x - 0, a + p = 1	
		e a = absorptivity, p = reflectivity, x = transmis	•		
12.		luid forces considered in the Navier Stokes eq			
		gravity, pressure and viscous		gravity, pressure and turbulent	
	` ,	viscous, pressure and viscous	(d)	gravity, turbulent and viscous	
13.		hypersonic flow, the mach number is			
	` /	unity		greater than unity	
		greater than 2	` ′	greater than 4	
14.		bject having 10 kg mass weighs 9.81 kg on a s			
	\ /	10 m/sec ²	` ′	9.81 m/sec ²	
	` '	10.2 m/sec ²	` /	9 m/sec ²	
15.	If mercury in a barometer is replaced by water, the height of 3.75 cm of mercury will be following c of water				
	` '	51 cm	` ′	50 cm	
	(c)	52 cm	(d)	52.2 cm	
16.		gnition of the charge by some hot surface withi			
	` '	Pre-ignition Pre-ignition	` ′	Detonation	
	(c)	Ignition delay	(d)	Auto-ignition	
17.	A flu	id is said to be ideal, if it is			
		incompressible	` /	inviscous	
	(c)	inviscous and incompressible	(d)	viscous and compressible	

18.	. Which of the following is the lightest and most volatile liquid fuel?			
	(a) Diesel	(b)	Kerosene	
	(c) Fuel oil	(d)	Gasoline	
19.	The air standard efficiency of an I.C. er of specific heats)	where $r = $ Compression ratio, and $g = $ Ratio		
	(a) $1 - r^{g-1}$	(b)	$1 + r^{g-1}$	
	(c) $1 - (1/r^{g-1})$	(d)	None of these	
20.	For the same compression ratio, the eff	ficiency of dual co	mbustion cycle is	
	(a) greater than Diesel cycle and les	s than Otto cycle		
	(b) less than Diesel cycle and greate	r than Otto cycle		
	(c) greater than Otto cycle			
	(d) less than Diesel cycle			
21.	Which of the following cycles uses air	as the refrigerant		
	(a) Ericsson	(b)	Stirling	
	(c) Carnot	(d)	Bell-coleman	
22.	The COP of domestic refrigerator is			
	(a) less than 1	(b)	more than 1	
	(c) equal to 1	(d)	depends upon the make	
	. A counter flow shell and tube heat exchanger is used to heat water with hot exhaust gases. The water (c=4180 J/kgK) flows at the rate of 2 kg/s and the exhaust gases (c=1000 J/kgK) flow the rate of 5 kg/s. If the heat transfer surface area is 32 m² and the overall heat transfer coefficie is 200 W/m²K. The NTU of the heat exchanger is			
	(a) 4.5	` '	2.4	
	(c) 8.6	(d)	1.28	
24.	Property of a fluid by which its own me	olecules are attrac	eted is called	
	(a) adhesion	` '	cohesion	
	(c) viscosity	(d)	surface tension	
25.	25. Bernoulli equation deals with the law of conservation of			
	(a) mass	(b)	momentum	
	(c) energy	(d)	work	
26.	6. If jet of water coming out from a nozzle with a velocity 9.81 m/s, the angle of elevation being 30°, time to reach the highest point is			
	(a) 0.25 sec	(b)	0.50 sec	
	(c) 1.0 sec	(d)	1.5 sec	
27.	What causes suction of fluid into the ge	ear pump?		
(a) when pressure drops during disengagement of teeth at the suction side				
	(b) when pressure increases during disengagement of teeth at the suction side			
	(c) when pressure drops during engagement of teeth at the suction side(d) when pressure increases during engagement of teeth at the suction side			
28.	The vapour compression refrigeration e	employs the follow	ving cycle	
	(a) Reverse carnot	(b)	Carnot	
	(c) Rankine	(d)	Brayton	

29.	In convection heat transfer from hot flue gases to water tube, even though flow may be turbulent, a laminar flow region (boundary layer of film) exists close to the tube. The heat transfer through this film				
	takes place by				
		convection	(b)	radiation	
	` '	conduction	` /	both convection and conduction	
30.	. ,	ch factor is considered while selecting the diam	. ,		
00.		bore diameter		length of stroke	
	` '	load	` ′	all of these	
31	()	ch of the following relationship is valid only for	()		
J1.		mple compressible substance when changes in		- · · · · · · · · · · · · · · · · · · ·	
		dQ = dU + dW		Tds = dU + pdV	
	(c)	Tds = dU + dW	(d)	dQ = dU + pdV	
32.	Acco	ording to kinetic theory of heat			
		Temperature should rise during boiling			
		Temperature should fall during freezing			
	(c)	At absolute zero there is absolutely no vibration	on of	fmolecules	
		None of these			
33.	The 1	pressure exerted by an ideal gas is		of the kinetic energy of all the molecules	
		nined in a unit volume of gas.			
	(a)	One-half	(b)	one-third	
	(c)	Two-third	(d)	Three-fourth	
34.	Whic	ch of the following statement is incorrect?			
(a) The liquid fuels consist of hydrocarbons.					
	(b) The liquid fuels have higher calorific value than solid fuels.				
	(c)	The solid fuels have higher calorific value than	liqu	id fuels.	
	(d)	A good fuel should have low ignition point.			
35.	Cont	inuous flow of fluid is called as			
	(a)	Continuum	(b)	Invincible flow	
	(c)	Continuum & Invincible flow	(d)	None of these	
36.	The v	volumetric efficiency for reciprocating air comp	oress	ors is about	
	(a)	10 to 40%	(b)	40 to 60%	
	(c)	60 to 70%	(d)	70 to 90%	
37.	The	stagnation pressure rise in a centrifugal compre	essor	takes place	
		In the diffuser only		In the impeller only	
	(c)	In the diffuser and impeller	` ′	In the inlet guide vanes only	
38.	The	naximum delivery pressure in a rotary air com	oress	sor is	
		10 bar	•	20 bar	
	` /	30 bar	` /	50 bar	
•					
39.	Unit	of flow resistance is			
39.		of flow resistance is N/m ²	(b)	m^2/N	

40.	0. Coefficient of discharge is						
	(a)	(a) Directly proportional to coefficient of discharge					
	(b)	Inversely proportional to square of the coefficient of discharge					
	(c)	Inversely proportional to coefficient of discharge					
	(d)) Directly proportional to square of coefficient of discharge					
41.	In ve	locity compounded turbines flow passage	is from				
	(a)	Moving blades to fixed nozzles	(b)	Fixed nozzles to moving blades			
	(c)	Fixed blades to moving nozzles	(d)	None of these			
42.	Reac	tion turbine is also called as					
	(a)	Impulse turbine	(b)	Curtis wheel			
	(c)	Parsons turbine	(d)	None of these			
42.	Gas t	turbines operate at pressures	_than crit	ical pressure ratio.			
	(a)	Higher	(b)	Lesser			
	(c)	Does not depend on pressure ratio	(d)	None of these			
43.	Vapo	or quality is an					
	(a)	Extensive property	(b)	Intensive property			
	(c)	Extensive & Intensive property	(d)	None of these			
44.	Spec	ific volume of steam isto dr	yness fact	ion at given temperature.			
	(a)	Not related	(b)	Indirectly proportional			
	(c)	Directly proportional	(d)	equal to			
45.	The	rate of energy transferred by convection to	o that by c	onduction is called			
	(a)	Stanton number	(b)	Nusselt number			
	(c)	Biot number	(d)	Peclet number			
46.	LMT	TD in case of counter flow heat exchanger	as compa	red to parallel flow heat exchanger is			
	(a)	Higher	(b)	Lower			
	(c)	Same	(d)	Depends on the area of heat exchanger			
47.	Joule	e sec is the unit of					
	(a)	Universal gas constant	(b)	Kinematic viscosity			
	(c)	Thermal conductivity	(d)	Planck's constant			
48. The product of Reynolds number and Prandtl number is known as							
	(a)	Stanton number	(b)	Biot number			
	(c)	Peclet number	(d)	Grashoff number			
49. An ordinary passenger aircraft requires a cooling system of capacity.							
	(a)	2 TR	(b)	4 TR			
	(c)	8 TR	(d)	10 TR			
50.	Four	ier's law of heat conduction gives the hea	t flow for				
	(a)	Irregular surfaces	(b)	Non uniform temperature surfaces			
	(c)	One dimensional cases only	(d)	Two dimensional cases only			

<u>SECTION - B (Short answer type question)</u> (100 Marks)

All questions carry equal marks of 5 each.

This Section should be answered only on the **Answer Sheet** provided.

- 1. A venturimeter is installed in a horizontal pipe line of 0.3 m diameter. The difference of pressure at entrance and throat read by a mercury manometer is 5 cm, when the water is flowing at the rate of 50 litres per second. Find the diameter of the venturimeter at the throat, if the coefficient of discharge is 0.96.
- 2. Steam at 350°C flowing in a pipe (k=80W/mK) 5 cm internal diameter is covered with 3 cm thick insulation (k=0.05 W/mK). Heat is loss to the surroundings at 5°C by natural convection and radiation with combined h=20 W/m²K and h_i=60 W/m²K. Find (i) the rate of heat loss from the pipe per unit length, (ii) the temperature drops across the pipe and the insulation.
- 3. Write the different Psychrometric process with detail diagrams.
- **4.** Discuss the principle operation of an Otto cycle with indicator diagram.
- 5. Write the working principle of a single-acting reciprocating pump with detail schematic diagram.
- **6.** How Cavitation can be eliminated by Pump? Why Centrifugal Pump is not called as a Positive Displacement Type of Pump?
- 7. Find the mach number when an aeroplane is flying at 900 km/hr through still air having a pressure of 8×10^4 N/m² and temperature -15 °C. Take k = 1.4 and R = 287 j/kgK. Calculate the pressure, temperature and density of air at the stagnation point on the nose of the plane.
- 8. Write the characteristics of an ideal working fluid in vapour power cycles.
- **9.** Draw the vapour compression refrigeration cycle with h-s diagram and explain the different components.
- 10. Derives the temperature distribution for one dimensional steady state heat conduction in a plane wall considering heat generation and show the temperature distribution at the central point.
- 11. In an automobile washing station, water flows through a long hose of 1.5cm diameter with a speed of 5m/s. If its outlet contains a nozzle of 8mm diameter, what is the velocity and rate of discharge through the nozzle?
- 12. State Dalton's law of partial pressure and define bypass factor of coil?
- 13. Carnot engine working between a source temperature of T₂ and sink temperature of T₁ has efficiency of 25%. If the sink temperature is reduced by 20 °C, the efficiency is increased to 30%. Find the source and the sink temperature.
- 14. Calculate the maximum efficiency of an engine operating between 120 °C and 35 °C
- **15.** Explain the Carnot theorem with proof.
- **16.** What is fouling? Explain its effect on the heat exchanger?
- 17. State Kirchhoff's law of radiation, what is the purpose of radiation shield?
- 18. What is a boiler mounting? Discuss the different boiler accessories in details.
- 19. A stream function is given by $w = 3x^2y + (2+t)y^2$. Find the velocity field and determine its value at a point defined by the position vector r = 1i + 2j 3k when t = 2.
- 20. Discuss the effects of variation of discharge on the efficiency of a pump.

* * * * * * *