MIZORAM PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATIONS FOR RECRUITMENT TO THE POST OF

GEOLOGIST JUNIOR UNDER COMMERCE & INDUSTRIES DEPARTMENT, GOVERNMENT OF MIZORAM, NOVEMBER, 2020

GEOLOGY PAPER - II

Time Allowed: 2 hours Full Marks: 200

All questions carry equal mark of 2 each.
Attempt all questions.

1. Graphic texture is indicative of						
(a)	Eutectic crystallization	(b)	Crystal Settling			
(c)	Fractional crystallization	(d)	Magma mixing			
2. Galer	na crystallizes in					
(a)	Monoclinic system	(b)	Isometric system			
(c)	Trigonal system	(d)	Triclinic system			
3. Augi	te shows					
(a)	1 st order interference colours	(b)	2 nd order interference colours			
(c)	3 rd order interference colours	(d)	4 th order interference colours			
4. Clear	vage angles in pyroxene					
(a)	84° and 96°	(b)	87° and 93°			
(c)	80° and 100°	(d)	120°			
5. Back	r-line method is used to determine the					
(a)	Birefringence	(b)	Double refraction			
(c)	Refractive index	(d)	Pleochroism			
6. Which	ch crystal systems have two optic axes?					
(a)	Orthorhombic and Monoclinic	(b)	Orthorhombic, Monoclinic and Triclinic			
(c)	Monoclinic, Triclinic and Cubic	(d)	Tetragonal, Cubic and Orthorhombic			
7. The c	order of interference colour is determined by					
(a)	Quartz plate	(b)	Gypsum plate			
(c)	Mica plate	(d)	Calcite plate			
8. A bia	ixial mineral is positive, if					
(a)	X is acute bisectrix	(b)	Y is acute bisectrix			
(c)	Z is acute bisectrix	(d)	Z is obtuse bisectrix			
9. SCH	ORL is an aggregate of					
	Tourmaline and quartz	(b)	Tourmaline and calcite			
(c)	Tourmaline and corundum	(d)	Tourmaline and emery			

10.	Whic	ch of the following forms of silica crystallizes in	Mon	oclinic system?
	(a)	Milky quartz	(b)	Rose quartz
	(c)	Rock crystal	(d)	Averturine
11.	The	nost common form of pyroxene is		
	(a)	Basal pinacoid	(b)	Front pinacoid
	(c)	Side pinacoid	(d)	Prism
12.	Whic	ch of the following mineral is a chain silicate?		
	(a)	Augite	(b)	Biotite
	(c)	Anorthite	(d)	Olivine
13.	How	many metals are there in liquid form?		
	(a)	2	(b)	3
	(c)	4	(d)	5
14.	Isoto	pes are different elements with		
		Same atomic numbers but different atomic m	ass	
	(b)	Different atomic weights but same atomic nur	nbers	3
	(c)	Different atomic weights and different atomic	num	bers
	(d)	Same number of neutrons but different numb	er of	protons in the nulceus
15.	Tekti	tes resemble		
	(a)	Basalt	(b)	Granodiorite
	(c)	Rhyolite	(d)	Obsidian
16.	The c	common type of pyroxene which occurs in me	teorit	es is
	(a)	Hypersthene	(b)	Enstatite
	(c)	Bronzite	(d)	Jadite
17.	The	chemical bond existed in quartz is		
	(a)	Covalent	(b)	Ionic
	(c)	Metallic	(d)	Vander wall
18.	Rubi	dium is usually found dispersed in		
	(a)	K-rich minerals	(b)	Ca-rich minerals
	(c)	Na- rich minerals	(d)	Al-rich minerals
19.	The	crust consists of		
	(a)	About 95% of silicate minerals	(b)	About 75% of silicate minerals
	(c)	Over 50% of quartz	(d)	Over 50% of non-silicates
20.	The a	average pH of the sea water is		
	(a)	5.2	(b)	6.5
	(c)	7.0	(d)	7.8
21.	Whic	ch of the following is an example of a Mafic	rock (containing plagioclase, titanium – bearing
	pyrox	xene and hornblende?		
	(a)	Serpentine	(b)	Essexite
	(c)	Ijolite	(d)	Leucitite
22.	Volca	anic rocks are formed		
	` '	Between mantle	` ′	On the surface of earth
	(c)	Under the surface of earth	(d)	Inside the core

23.	Which property of the rock reflected the rate of cooling of magma or lava?				
	(a) Density	(b)	Colour		
	(c) Texture	(d)	Mineralogy		
24.	Fine grained equivalent of	plutonic syenite is			
	(a) Lherzolite	(b)	Dacite		
	(c) Aplite	(d)	Trachyte		
25.	Large crystals in pegmatit	te are formed due to			
	(a) Influence of cooling				
	(b) The presence of abu	ndant volatiles in magma			
	(c) Very high pressure				
	(d) All of these				
26.	For a system at equilibrium	m the phase rule is denoted as			
	(a) $P + F = C + 1$	(b)	P + C = F + 1		
	(c) $P + F = C + 2$	(d)	P + C = F + 2		
27.	Which of the following is	silica saturated rock?			
	(a) Granite	(b)	Diorite		
	(c) Sphene	(d)	Nepheline syenite		
28.	In plate tectonic settings,	basalt are formed at			
	(a) Spreading center	(b)	Transform boundary		
	(c) Subduction zone	(d)	Continent-continent collision		
29.	A rock derived from the p	rimary basaltic magma is char	racterized by		
	(a) Occurrence of oliving	ne and clinopyroxene (b)	Absence of olivine and feldspathiod		
	(c) Presence of clinopy	roxene and quartz (d)	Presence of feldspar and quartz		
30.	The grabbroic rock without	nt pyroxenes containing mainly	y feldspars and olivine is		
	(a) Norite	(b)	Troctolite		
	(c) Dunite	(d)	Eucrite		
31.	The correct sequence of re	ocks from top to bottom in an	ophiolite is		
	(a) Gabbro – pillow bas	salt – dolerite dyke – radiolari	an chert – periditite		
	(b) Peridotite – pillow l	basalt – gabbro – dolerite dyk	e – radiolarian chert		
	(c) Pillow basalt – radio	olarian chert – dolerite dyke –	gabbro – peridotite		
	(d) Radiolarian chert –	pillow basalt – dolerite dyke -	– gabbro – peridotite		
32.	Which one is not a discord	dant igneous body?			
	(a) Dyke	(b)	Sill		
	(c) Batholith	(d)	Pluton		
33.	Bowen's reaction series in	<u> </u>	magma		
	(a) Fractional differentia	ation (b)	Gravity separation		
	(c) Liquid immiscibility	(d)	Filter pressing		
34.	'Pahoehoe' structure is re	lated to			
	(a) Block lava	(b)	Ropy lava		
	(c) Pillow structure	(d)	Lava-drain tunnel		

35.	Ijolite is a		
	(a) Felsic alkaline rock	(b)	Mafic alkaline rock
	(c) Ultramafic alkaline rock	(d)	Volcanic rock
36.	CIPW classification is essentially a		
	(a) Mineralogical classification	(b)	Chemical classification
	(c) Textural classification	(d)	Genetic classification
37.	Which of the following volcanic rocks contain the h	nighe	st percentage of silica?
	(a) Basalts	_	Andesites
	(c) Trachytes	(d)	Rhyolites
38.	Rocks that are dominantly composed of quartz car	ı be c	lassified on the basis of
	(a) ACF diagrams	(b)	AKF diagrams
	(c) AFM diagrams	(d)	QAP diagrams
39.	Myrmekite texture is produced by intergrowth of		
	(a) Quartz and orthoclase	(b)	Albite and oligoclase
	(c) Plagioclase and augite	(d)	Quatrz and plagioclase
40.	Pipes or narrow funnel-shaped bodies filled with accident	denta	l and gas-charged juvenile magmatic material
	are known as		
	(a) Xenoliths	(b)	Diatremes
	(c) Mafurite	(d)	Dike
41.	Choose the correct sequence of deformation and m		-
	(a) Shale, slate, schist, phyllite, gneiss		Shale, slate, phyllite, schist, gneiss
	(c) Slate, shale, phyllite, schist, gneiss	(d)	Slate, shale, schist, phyllite, gneiss
42.	Mylonite represents	(1.)	
	(a) Dynamic metamorphism	(b)	Regional metamorphism
	(c) Burial metamorphism	(d)	Contact metamorphism
43.	Which one is completely unfoliated rock?	(1.)	
	(a) Slate	` /	Schist
	(c) Phyllite	(d)	Hornfels
44.	Large scale metamorphism associated with increas		-
	(a) Contact metamorphism		Burial metamorphism
	(c) Parting melting	` '	Regional metamorphism
45.	The process of conversion of glassy material into cr	•	
	(a) Crystallisation	()	Devitrification Assimilation
1.0	(c) Eutectic processes	` /	
46.	The plagioclase + hypersthenes + biotite mineral as		
	(a) Amphibolite facies(c) Epidote facies	` /	Green schist facies Dyrayona hamfals facies
	•	(u)	Pyroxene – hornfels facies
4 7.	Metamorphic grade refers to		
	(a) Intensity of metamorphism (b) Collection of minerals assemblage from rock	ra of ·	various bulk composition that amountabliced at
	(b) Collection of minerals assemblage from rock same P, T condition	29 OI V	arrous ourk composition mat crystamsed at
	(c) Particular mineral observed at a specific P, T	cond	ition

(d) Specific P, T condition of metamorphism

48.		is the high temperature and high pressure	meta	morphic facies
	(a)	Blueschist	(b)	Greenschist
	(c)	Eclogite	(d)	Amphibolite
49.	Whic	ch one is not a metamorphic rock?		
	(a)	Hornfels	(b)	Orthoquartzite
	(c)	Metagranite	(d)	Biotite gneiss
50.	The t	ypical product of contact metamorphism with	macı	llose structure is
		Granulose		Cataclastic
	(c)	Hornfels	(d)	Schistose
51.	Repe	stitive layering in metamorphic rocks is describ	ed as	S
	(a)	Foliation	(b)	Lineation
	(c)	Schistosity	(d)	Gneissosity
52.	Then	mal metamorphism leads to		
	(a)	Change in mineralogical composition only		
	(b)	Change in fabric only		
	(c)	Change in mineralogical composition and fabr	ric	
	(d)	Non of these		
53.	Whic	ch of the following type of folds are commonly	assoc	eiated with migmatites?
	(a)	Reclined folds	(b)	Ptygmatic folds
	(c)	Supratenuous folds	(d)	Piercing folds
54.	Marb	ble is transformed from		
	(a)	Sandstone	(b)	Quartz
	(c)	Limestone	(d)	Shale
55.	Flase	er rocks are the chief product of		
	(a)	Thermal metamorphism	(b)	Dynamothermal metamorphism
	(c)	Plutonic metamorphism	(d)	Cataclastic metamorphism
56.	The S	Staurloite Zone is established by Barrow in res	strict	ed to rocks having high content of
	(a)	Iron	(b)	Copper
	(c)	Magnesium	(d)	Manganese
57.	The r	most common accessory mineral in eclogites is		
	(a)	Rutile	(b)	Zoisite
	(c)	Ilmenite	(d)	Sphene
58.	The	most commonly occurring silicates in metamor	phic	rocks are
	(a)	Ionosilicates – Phyllosilicates – Tectosilicates	,	
	(b)	Ionosilicates – Phyllosilicates – Nesosilicates		
	(c)	Neso silicates-Phyllosilicates-Tecto silicates	S	
	(d)	Nesosilicates – Sorosilicates – Cyclosilicates		
59.	In Es	kola's ACF diagram, 'F' represents		
	(a)	FeO	(b)	FeO + MgO
	(c)	FeO + MgO + MnO	(d)	FeO + MgO + MnO + CaCO

60.	What	happens to size of crystal during metamorphis	sm?	
	(a)	They get smaller	(b)	The get larger
	(c)	No change in size	(d)	It is uncertain
61.	Whic	h of the following sedimentary structure could	l be u	sed for determining top and bottom's
	(a)	Planer cross bedding	(b)	Asymmetrical ripple marks
	(c)	Symmetrical ripple marks	(d)	None of these
62.	Grad	ed bedding is the result of deposition by		
	(a)	River	(b)	Blowing wind
	(c)	Moving ice	(d)	Turbidity currents
63.	Syn-s	sedimentary deformation structures are a resul	tof	
	(a)	Low sedimentation	(b)	High sedimentation
	(c)	Marine transgression	(d)	Marine regression
64.	Sand	stone containing > 15% matrix and < 75% qu	artz a	re classified as
	(a)	Arkose	(b)	Greywacke
	(c)	Lithic arenite	(d)	Quartz arenite
65.	Whic	h of the following can be used to determine pa	aleo-c	current direction?
	(a)	Wave ripple	(b)	Mud cracks
	(c)	Current ripple	(d)	Pasrting lineation
66.	Lime	stone and dolostone are distinguished by		
	(a)	Magnesia content	(b)	Lime content
	(c)	Alumina content	(d)	Soda content
67.	The l	east stable material in elastic detritus is		
	(a)	Quartz	(b)	Olivine
	(c)	Amphibole	(d)	Hornblende
68.	The d	dispersal patterns peculiar to the deltaic enviro	nmei	nts are
	(a)	Unimodal	(b)	Bimodal
	(c)	Polymodal	(d)	Random
69.	Mine	rals which is not readily weathered by chemic	al att	ack are
	(a)	Reduzates	(b)	Resistates
	(c)	Hydrolysates	(d)	Oxidates
70.	Bog i	ron ore is		
	(a)	Iron carbonate	(b)	Iron bicarbonate
	(c)	Iron oxide	(d)	Iron hydroxide
71.	Waltl	ner's Law of Facies states that		
	(a)	Elimination of free oxygen from the sediment	s by t	pacterial action
	(b)	Characteristic associations of organic microfe	ossils	in rocks
	(c)	Vertical succession of facies reflects laterial c	hange	es in environment
	(d)	Deposition of minerals in the cavities and po	re spa	aces
72.	The e	evaporite that is typical of non-marine basins is	S	
	(a)	Gypsum	(b)	Halite

(d) Trona

(c) Calcite

73.	Glauconite is a		
	(a) K-Fe silicate	(b)	Na-Fe silicate
	(c) K-Fe carbonate	(d)	Na-Fe carbonate
74.	Ripple marks are best observed in		
	(a) Shale	(b)	Conglomerate
	(c) Sandstone	(d)	Limestone
75.	Diagenesis is a		
	(a) Syn-depositional change	(b)	Post-depositional change
	(c) Pre-depositional change	(d)	None of these
76.	Which type of coal is dominantly composed o	f algal a	nd fungal matter?
	(a) Lignite	_	Anthracite
	(c) Cannel coal	(d)	Torbanite
77.	Zircon and quartz usually occur as	` ,	
	(a) Unaltered minerals	(b)	Altered minerals
	(c) Insoluble minerals	` /	Soluble minerals
78.	Arkose is derived from the disintegration of	()	
, 0.	(a) Gabbro	(b)	Granite
	(c) Ultrabsic rocks	(d)	Marble
79	'Shingle' is characteristic of environ	` /	
17.	(a) Littoral	(b)	Terrestrial
	(c) Neritic	` '	Abyssal
80	Chalk is a variety of	()	110,000,
00.	(a) Biosparite	(b)	Sparite
	(c) Biomicrite	(d)	<u> </u>
01		. ,	
01.	In many earthquakes, mine workers below grobecause of	ouna rep	of tiess snaking than people on the surface
	(a) Hollow space in the mine		
	(b) Double the amplitude of the upcoming v	vaves	
	(c) Weathered rocks are available on the su		
	(d) This statement is wrong		
82.	Which of the following tools are not used by e	environn	nental geologist
	(a) Desk surveys		Field-based documentation
	(c) Terrain analysis	` '	Excavation process
83.	Data from international scientific studies sho	w that t	he earth's climate has been stable for the
	past		
	(a) 5000 years	(b)	8000 years
	(c) 10000 years	(d)	12000 years
84.	Earth has remained in the solar system's	whe	ere surface temperatures and atmospheric
	pressure allow liquid water to exist		-
	(a) Habitable zone	(b)	Terrestria
	(c) Blue giant	(d)	Water planet

85.	A pro	ocess that amplifies or increases a system's	resp	onse to a change in the heat balance is
	(a)	Negative climate feedback	(b)	Sustained climate feedback
	(c)	Positive climate feedback	(d)	Confirmed climate feedback
86.	Acco	ording to A.G. Tansely, ecosystem is compri	sed o	\mathbf{f}
	(a)	Biome and habitat	(b)	Biome and province
	(c)	Biotic and abiotic	(d)	Habitat and colony
87.	The	equilibrium model states that		
	(a)	Ecosystem always tends towards sustainab	oility	
	(b)	Ecosystem always tends towards stability		
	(c)	Ecosystem always tends towards constance	y of s	species
	(d)	Capacity to withstand changes by external	facto	ors
88.	Non	point sources are those		
	(a)	Which release contaminants over a specific	c are	a and commonly consist of multiple sites
	(b)	Which release contaminants over a broad	area a	and commonly consist of specific site
	(c)	Which release contaminants over a broad	area a	and commonly consist of multiple sites
	(d)	Which release contaminants over a specific	c are	a and commonly consist of specific site
89.	•	household, industrial or commercial wast	e whi	ich is collected and disposed of by local
	(a)	Recycled waste	(b)	Supervised waste
	(c)	Managed waste	(d)	Controlled waste
90.	In river	ver bank, erosion of outside banks is facil	itateo	d by the presence of within the
	(a)	Primary current	(b)	Secondary current
	(c)	Swollen current	(d)	Rapid current
91.	Vuln	erability to coastal hazard is a function of tl	ne	
	(a)	Land use, population concentration and bu	ildin	gs located in the hazard zone
	(b)	Cliff face, storm surge and buildings infras	struct	ure
	(c)	Storm surge, sea-level rise, erosion, and in	ılet n	nigration
	(d)	Cliff rock formation, vegetation cover and	l sea l	evel trends
92.	A slo	ope with a factor of safety of less than re	i	s unstable and therefore in a condition of
	(a)	One	(b)	Two
	(c)	Three	(d)	Four
93.	Haza	ard maps are not static and may date quickly	/ if	
	(a)	Mass displacement of sediment and rock of	ccur	
	(b)	Climate change increases or decreases we	ather	hazards
	(c)	Land management and land use changes		
	(d)	Shaking or displacement of ground due to e	eartho	quake manifestation
94.	Liqu	efaction causes large fluid flow on slope gr	eater	than
	(a)	1^{0}	(b)	2^{0}
	(c)	3^0	(d)	4^0

95.	95. A section of active fault zones where there has been little or no movement is known as					
	(a)	Isoseismals	(b)	Seismic dilatancy		
	(c)	Seismic corridor	(d)	Seismic gap		
96.	The 1	natural environmental system has a 'inbuilt s	elf re	egulating mechanism' called		
	(a)	Self-regulation mechanism	(b)	Homeostatic mechanism		
	(c)	Reappraisal mechanism	(d)	Responsive mechanism		
97.	The f	fourth-largest threat to human health, behind	high	blood pressure, dietary risks and smoking		
	is					
	` '	Air pollution	(b)	Water pollution		
	(c)	Noise pollution	(d)	Soil pollution		
98.	'Min	amata Disease' is a type of disease caused b	у			
	(a)	Asbestos poisoning	(b)	Mercury poisoning		
	(c)	Lead poisoning	(d)	Arsenic poisoning		
99.	The	prodecure of Environmental Impact Assessmen	nt of]	Leopold et al. suffers from the shortcoming		
	(a) It requires tremendous volume of paper work by requiring detailed reports which obscure the central and important issues					
	(b)	Insertion of numerous information and report difficult for the concerned authorities to pic				
	(c)	It has bias towards physical-biological env	ironr	nent		
	(d)	All of these				
100.	The 1	most common magnitude scale is				
	(a)	Local magnitude (ML)	(b)	Surface-wave magnitude (Ms)		
	(c)	Body-wave magnitude (Mb)	(d)	Moment magnitude (Mw)		
* * * * * *						