MIZORAM PUBLIC SERVICE COMMISSION # TECHNICAL COMPETITIVE EXAMINATIONS FOR JUNIOR GRADE OF MIZORAM ENGINEERING SERVICE (M.E.S.) UNDER PUBLIC HEALTH DEPARTMENT, GOVERNMENT OF MIZORAM, MAY, 2019. ## ELECTRONICS & COMMUNICATION ENGINEERING PAPER - I Time Allowed: 3 hours FM: 200 ### **SECTION - A** (Multiple Choice questions) | | | (100 Mar) | ks) | | | |--|-------|--|---------------|--|--| | All questions carry equal mark of 2 each. Attempt all questions. | | | | | | | | | This Section should be answered only on th | he <u>O</u> l | MR Response Sheet provided. | | | 1. | Whic | ch capacitor-store higher amount of energy? | | | | | | (a) | Air capacitor | (b) | Paper capacitor | | | | (c) | Mica capacitor | (d) | Plastic film capacitor | | | 2. | In pa | ramagnetic materials - | | | | | | (a) | permanent magnetic dipoles exist but the negligible | inte | raction between neighbouring dipoles is | | | | (b) | permanent magnetic dipole do not exist | | | | | | (c) | permanent magnetic dipoles exist and the very strong | inte | raction between neighbouring dipoles is | | | | (d) | permanent magnetic dipole moment may or | may | not exist | | | 3. | Ferri | tes have - | | | | | | (a) | a low copper loss | (b) | low eddy current loss | | | | (c) | low resistivity | (d) | higher specific gravity compared to iron | | | 4. | At a | very low temperature, a semiconductor - | | | | | | (a) | becomes a conductor | | | | | | (b) | becomes an insulator | | | | | | (c) | may become a conductor or an insulator | | | | | | (d) | will remain a semiconductor | | | | | 5. | The | colour code on a carbon resistor is red-red- | blacl | x-silver. The value of resistor is - | | | | (a) | 22000 W | (b) | 2200 W | | | | (c) | $22 \pm 5\% W$ | (d) | $22 \pm 10\%$ W | | | 6. | The t | emperature coefficient of a thermistor - | | | | (d) may be positive or negative depending on its composition (a) is positive(b) is negative (c) zero | 7. | Assertion (A): Helium, Argon and Neon are gaseous at room temperature. | | | | |-----|--|---|--------|---| | | Reason (R): The atoms in Helium, Argon and Neon are chemically extremely inactive. | | | | | | (a) Both A and R are true and R is correct explanation of A | | | | | | (b) Both A and R are true but R is not correct explanation of A | | | | | | (c) | A is true but R is false | | | | | (d) | A is false but R is true | | | | 8. | Nich | rome is used for - | | | | | (a) | overload line wires | (b) | heater coils | | | (c) | lamp filaments | (d) | all of these | | 9. | If k is | s Boltzmann's constant and T is absolute ten | np, th | nen at room temp | | | (a) | $kT \simeq 0.025 \text{ eV}$ | (b) | $kT \simeq 0.5 \text{ eV}$ | | | (c) | $kT \simeq 1 \text{ eV}$ | (d) | $kT \simeq 100 \mathrm{eV}$ | | 10. | If the valence electron is separated from a copper atom, the remaining part of atom has a necharge of | | | | | | (a) | 1 | (b) | -1 | | | (c) | 0 | (d) | +3 | | 11. | Asse | rtion (A): Intrinsic resistivity of silicon is le | ower | than that of germanium. | | | Reas | on (R): Magnitude of free electron concentr | ation | in germanium is more than that of silicon | | | (a) Both A and R are true and R is correct explanation of A(b) Both A and R are true but R is not correct explanation of A | | | ion of A | | | | | | nation of A | | | (c) | A is true but R is false | | | | | (d) | A is false but R is true | | | | 12. | The | units for e_r are | | | | | (a) | Farads | (b) | Farads/m | | | | kV | | | | | (c) | mn | (d) | no units | | 13. | As th | te temperature of semiconductor is increase | d - | | | | | the average number of free charge carriers | | eases | | | (a) the average number of free charge carriers increases (b) the average number of free charge carriers remains the same (c) the average number of free charge carriers may increase or decrease | | | | | | | | | ins the same | | | | | | increase or decrease | | 14. | In the | In the wave mechanical theory, the maximum of the charge distribution in the ground state occurs | | | | | for a distance from the nucleus equal to | | | | | | (a) | first Bohr radius | ` / | second Bohr radius | | | (c) | third Bohr radius | (d) | either first or second Bohr radius | | 15. | Asse | rtion (A): Holes are majority carriers in p t | ype | semiconductor. | | | | Reason (R): In p type semiconductor, the electrons produced by thermal agitation recombine wit holes. | | | | | (a) | (a) Both A and R are true and R is correct explanation of A | | | | | (b) | (b) Both A and R are true but R is not correct explanation of A | | | | | (c) | A is true but R is false | | | (d) A is false but R is true | 16. Fleming's left hand rule is used to find - | | | | | | |---|---|---|-------|---|--| | | (a) direction of force on a current carrying conductor | | | | | | | (b) direction of flux in solenoid | | | | | | (c) direction of magnetic field due to a current carrying conductor | | | | ying conductor | | | | (d) | direction of induced emf | | | | | 17. | The | number of protons in a silicon atom are - | | | | | | (a) | 4 | (b) | 8 | | | | (c) | 12 | (d) | 14 | | | 18. | Asse | ertion (A): Hall effect is used to determine | whetl | her the semi- conductor is p or n type. | | | | Reason (R): Under the influence of field, holes and electrons move in opposite direct | | | electrons move in opposite direction | | | | (a) | Both A and R are true and R is correct exp | lanat | ion of A | | | | (b) | Both A and R are true but R is not correct of | expla | nation of A | | | | (c) | A is true but R is false | | | | | | (d) | A is false but R is true | | | | | 19. | The | most important set of specifications of trans | form | er oil include - | | | | (a) | dielectric strength and viscosity | (b) | dielectric strength and flash point | | | | (c) | viscosity and flash point | (d) | flash point and viscosity | | | 20. | For i | isotopes of an element - | | | | | | (a) | | with | different mass | | | | (b) The only difference in composition between isotopes of the same element is the number neutrons in the nucleus | | | | | | | | | | | | | | (c) | | | - | | | | | proportions in which they normally occur in a | ature | | | | | (d) | All of these | | | | | 21. | N-ty | pe semiconductors are - | | | | | | (a) | Negatively charged | | | | | | (b) Produced when indium is added as an impurity to germanium | | | | | | | (c) | Produced when phosphorous is added as an i | impu | rity to silicon | | | | (d) | None of these | | | | | 22. | Whi | ch of the following gives piezo-electric effect - | | | | | | (a) | Mu metal | (b) | PVDF | | | | (c) | Sapphire | (d) | Ferrites | | | 23. | 23. The type of systems which are characterized by input and the output quantized at certain level called as - | | | nd the output quantized at certain levels are | | | | (a) | analog | (b) | discrete | | | | (c) | continuous | (d) | digital | | | 24. | Ane | xample of a discrete set of information/system | is - | | | | | | the trajectory of the Sun | | data on a CD | | | | (c) | universe time scale | (d) | movement of water through a pip | | | 25 | () | stem which is linear is said to obey the rules o | ` ' | ⊘ rr | | | -0. | - | scaling | (b) | additivity | | | | ` ' | both scaling and additivity | (d) | homogeneity | | | | \ / | \mathcal{L} | \ / | <i>-</i> | | | 26. | A tin | ne invariant system is a system whose outpu | ıt - | | |--|---|---|---|---| | | (a) | increases with a delay in input | (b) | decreases with a delay in input | | | (c) | remains same with a delay in input | (d) | vanishes with a delay in input | | 27. | A sys | stem is said to be defined as non-causal, wh | ien - | | | | - | the output at the present depends on the inp | | an earlier time | | | (b) | the output at the present does not depend o | n the | factor of time at all | | | (c) | the output at the present depends on the inp | ut at | the current time | | | (d) | the output at the present depends on the inp | out at | a time instant in the future | | 28. A system produces zero output for one input and same gives the same output | | | e gives the same output for several other | | | | inpu | ts. What is the system called? | | | | | (a) | Non – invertible System | ` ' | Invertible system | | | (c) | Non – causal system | (d) | Causal system | | 29. | 29. Which of the following signals are monotonic in nature? | | | | | | (a) | $1-\exp(-t)$ | (b) | $1-\exp(\sin(t))$ | | | (c) | log(tan(t)) | (d) | $\cos(t)$ | | 30. | For t | he signal $x(t) = a - b*exp(-ct)$, what is the s | steady | state value, and the initial value? | | | (a) | c, b | (b) | c, c-a | | | (c) | a, a-b | (d) | b, a-b | | 31. | Pote | ntial difference in electrical terminology is | know | n as? | | | (a) | Voltage | (b) | Current | | | (c) | Resistance | (d) | Conductance | | 32. | The | circuit in which current has a complete path | to fl | ow is called circuit. | | | (a) | short | (b) | open | | | (c) | closed | (d) | open loop | | 33. | If the voltage-current characteristic is a straight line through the origin, then the element is satisfied to be? | | | nrough the origin, then the element is said | | | (a) | Linear element | (b) | Non-linear element | | | (c) | Unilateral element | (d) | Bilateral element | | 34. | How | many types of dependent or controlled sou | rces a | are there? | | | (a) | 1 | (b) | 2 | | | (c) | 3 | (d) | 4 | | 35. | If the | e resistances 1W, 2W, 3W, 4W are parallel, th | en th | e equivalent resistance is? | | | (a) | 0.46 ₩ | (b) | 0.48 W | | | (c) | 0.5 W | (d) | 0.52 ₩ | | 36. | For a | voltage source to be neglected, the termina | als ac | ross the source should be - | | | (a) | replaced by inductor | (b) | short circuited | | | (c) | replaced by some resistance | (d) | open circuited | | 37. | In ca | se of ideal current sources, they have - | | | | | (a) | zero internal resistance | (b) | low value of voltage | | | (c) | large value of current | (d) | infinite internal resistance | | 38. | A practical voltage source can also be represented as - | | | | | | |-----|--|--|-------|----------------------------------|--|--| | | (a) | a resistance in series with an ideal current | sour | ce | | | | | (b) | (b) a resistance in series with an ideal voltage source | | | | | | | (c) | a resistance in parallel with an ideal volta | ge so | urce | | | | | (d) | none of the mentioned | | | | | | 39. | With some initial change at $t = 0+$, a capacitor will act as - | | | | | | | | (a) | open circuit | (b) | short circuit | | | | | (c) | a current source | (d) | a voltage source | | | | 40. | A voltage source of $300~V$ has internal resistance of 4W and supplies a load having the same resistance. The power absorbed by the load is - | | | | | | | | (a) | 1150 W | (b) | 1250 W | | | | | (c) | 5625 W | (d) | 5000 W | | | | 41. | In Su | In Superposition theorem, while considering a source, all other voltage sources are? | | | | | | | (a) | open circuited | (b) | short circuited | | | | | (c) | change its position | (d) | removed from the circuit | | | | 42. | The maximum power is delivered from a source to its load when the load resistance is the source resistance. | | | | | | | | (a) | greater than | (b) | less than | | | | | (c) | equal to | (d) | less than or equal to | | | | 43. | If source impedance is complex, then maximum power transfer occurs when the load impedance is the source impedance. | | | | | | | | (a) | equal to | (b) | negative of | | | | | (c) | complex conjugate of | (d) | negative of complex conjugate of | | | | 44. | The dual pair of current is? | | | | | | | | (a) | voltage | (b) | current source | | | | | (c) | capacitance | (d) | conductance | | | | 45. | Tellegen's Theorem is valid for network? | | | | | | | | (a) | linear or non-linear | (b) | passive or active | | | | | (c) | time variant or time invariant | (d) | all of these | | | | 46. | For Tellegen's Theorem to satisfy, the algebraic sum of the power delivered by the source is | | | | | | | | than power absorbed by all elements. | | | | | | | | (a) | greater | (b) | less | | | | | (c) | equal | (d) | greater than or equal | | | | 47. | Reciprocity Theorem is used to find the change in when the resistance is changed in the circuit. | | | | | | | | (a) | Voltage | (b) | Voltage or current | | | | | (c) | Current | (d) | Power | | | | 48. | Unde | er normal conditions a diode conducts current | wher | nitis - | | | | | (a) | reverse-biased | (b) | forward-biased | | | | | (c) | Avalanched | (d) | Saturated | | | - 49. The boundary between p-type material and n-type material is called - - (a) a diode (b) a reverse-biased diode (c) a p-n junction - (d) a forward-biased diode - **50.** How much is the base-to-emitter voltage of a transistor in the "on" state? - (a) 0 V (b) 0.7 V $(c) 0.7 \,\mathrm{mV}$ (d) Undefined ### SECTION - B (Short answer type question) (100 Marks) All questions carry equal marks of 5 each. This Section should be answered only on the **Answer Sheet** provided. - 1. What are resistors? Explain the advantages and disadvantages of carbon composition resistors. - **2.** Temperature coefficients of some given samples of ceramic capacitors are expressed as N200, P150, and NPO. What do these inscriptions indicate? - **3.** What are semiconductors? What are n-type and p-type semiconductors? - **4.** When $R_1 = 100$ K, $\pm 20\%$ is connected across $R_2 = 10$ K, $\pm 5\%$ what will be the tolerance of the parallel combination? What do you deduce from the result? - **5.** What materials are superconductors? Explain with examples. - **6.** What is Zener diode? Draw its circuit symbol and characterization. - 7. Calculate the reverse current of a silicon diode at a temperature of 27°C if a forward voltage of 0.5 V causes a current of 1 A. - **8.** What are the Enhancement MOSFET and Depletion MOSFET? - 9. Briefly describe the application of JFET as a Voltage Variable Resistors (VVR). - **10.** What is Silicon Controlled Switch? How does it resemble a four layer diode? - 11. What are Signum Function and Sinc function? - **12.** What are the classifications of continuous time signals? Name them. - 13. To implement the linear time invariant recursive system described by the difference equation, $y(n) = -\sum_{k=1}^{n} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$ in direct form-I, how many number of delay elements and multipliers are required respectively? - **14.** What is the z-transform of the finite duration signal $x(n) = \{2,4,5,7,0,1\}$? \uparrow - 15. If $x(n) = x_R(n) + jx_I(n)$ is a complex sequence whose Fourier transform is given as $X(v) = X_R(v) + jX_I(v)$, then what is the value of $X_R(v)$? - **16.** Which type of networks allows the physical separability of the network elements (resistors, inductors & capacitors) for analysis purpose and why? - 17. How is the loop analysis different in application/functioning level as compared to Kirchoff's law? - 18. How is the short circuit reverse transfer admittance (y_{12}) calculated in terms of current and voltage ratio? - 19. What will be the value of a rectangular (complete incidence) matrix, if an associated branch is oriented towards the node? - **20.** How is an insertion loss represented in terms of power ratio? Explain. * * * * * * *