CSM : 15

MATHEMATICS

PAPER - I

Time Allowed : 3 hours
Full Marks : 100

Marks for each question is indicated against it.

Attempt any 5 (five) questions taking not more than 3 (three) questions from each Part.

PART A

1. (a) Let $A \in M_n(F)$ and let $\lambda_1, \lambda_2, \ldots, \lambda_m \in F$ be distinct characteristic roots of A. If $\{v_1, v_2, v_3, \ldots, v_m\}$ are the corresponding characteristic vectors. Prove that $\{v_1, v_2, v_3, \ldots, v_m\}$ are linearly independent. (10)

(b) Let W be any subspace of a finite dimensional vector space V. Show that there exists a subspace W' of V such that $V = W + W'$ and $W \cap W' = \{0\}$. Further show that for any such subspace W', $\dim V = \dim W + \dim W'$. (10)

2. (a) Prove that the function f, where

$$
f(x, y) = \begin{cases}
\frac{xy}{\sqrt{x^2 + y^2}}, & \text{if } (x, y) \neq (0, 0) \\
0, & \text{if } (x, y) = (0, 0)
\end{cases}
$$

is continuous at $(0, 0)$ (5)

(b) Find all the maxima and minima of the function given by

$$f(x, y) = x^3 + y^3 - 63(x + y) + 12xy.$$ (5)

(c) If $u = \frac{x^2 + y^2 + z^2}{x}$, $v = \frac{x^2 + y^2 + z^2}{y}$, $w = \frac{x^2 + y^2 + z^2}{z}$, then show that

$$\frac{\partial}{\partial (u, v, w)} \left(\frac{x^2 y^2 z^2}{(x^2 + y^2 + z^2)^3} \right) = \frac{x^2 y^2 z^2}{(x^2 + y^2 + z^2)^3}$$ (10)
3. (a) Prove that \[
\int \frac{(x^4 - 1)\, dx}{x^2\sqrt{x^4 + x^2 + 1}} = \frac{\sqrt{x^4 + x^2 + 1}}{x} + c \quad (5)
\]

(b) Prove that \[
\iint_R xy\, dA = \frac{243}{8},
\]
where \(R\) is the region enclosed by the curves \(y = x^2\) and \(y = 3x\). \(5\)

(c) Prove that \[
\int_0^2 \frac{\, dx}{\sqrt{4 - x^2}} = \frac{\pi}{2} \quad (5)
\]

(d) Evaluate the integral \[
\iint (4x^2 - y^2)\, dxdy \quad \text{over the triangle formed by the straight lines} \quad y = 0, \ x = 1, \ y = x. \quad (5)
\]

4. (a) Find the shortest distance between the lines
\[
\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \quad \text{and} \quad \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}
\]
and the equations of the line of shortest distance \(7\)

(b) Show that the equation \(2x^2 + 3y^2 - 8x + 6y - 12z + 11 = 0\) represents an elliptic paraboloid. \(6\)

(c) Prove that the planes \(lx + my + p = 0\) and \(l'x + m'y + p' = 0\) are conjugate diametral planes of the paraboloid \(ax^2 + by^2 = 2cz\) if \(\frac{l'l'}{a} + \frac{mm'}{b} = 0\). \(7\)

PART B

5. (a) Apply the method of variation of parameters to solve the equation
\[
x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 e^x \quad (10)
\]

(b) Find the orthogonal trajectories of \(\frac{x^2}{a^2} + \frac{y^2}{a^2 + \lambda} = 1\), where \(\lambda\) is a parameter. \(6\)

(c) Solve: \(y = px + a\sqrt{1 + p^2}\) \(4\)
6. (a) Establish the formula \[\frac{d^2u}{d\theta^2} + u = \frac{P}{\hbar^2 u} \] for the motion of a particle describing a central orbit under an attractive force \(P \) per unit mass, the symbols having usual meaning. \((10)\)

(b) A body is projected at an angle \(\alpha \) to the horizon, so as just to clear two walls of equal height \(a \) at a distance \(2a \) from each other.

Show that the range is equal to \[2a \cot \frac{\alpha}{2}. \] \((5)\)

(c) A body of mass \((m_1 + m_2) \) moving in a straight line is split into two parts of masses \(m_1 \) and \(m_2 \) by an external explosion which generates kinetic energy \(E \). If after the explosion, the two parts move in the same line as before, show that their relative velocity is \[\sqrt{\frac{2E}{m_1m_2}} \] \((5)\)

7. (a) A rod AB is movable about a point A and to the point B is attached a string whose other end is tied to a ring. The ring slides along a smooth horizontal wire passing through A. Prove by the principle of virtual work that the horizontal force necessary to keep the ring at rest is \[\frac{w \cos \alpha \cos \beta}{2 \sin(\alpha + \beta)} \] \((10)\)

(b) The least force which will move a weight up an inclined plane is \(P \). Show that the least force acting parallel to the plane which will move the weight upwards is \[P \sqrt{1 + \mu^2} \], where \(\mu \) is the coefficient of friction. \((10)\)

8. (a) Show that \[\text{curl} \text{ curl} \vec{f} = \vec{\nabla} \text{div} \vec{f} - \nabla^2 \vec{f}. \] \((10)\)

(b) Evaluate \[\int_{\Gamma} (e^x dx + 2ydy - dz) \] by using Stokes’ theorem where \(\Gamma \) is the curve \(x^2 + y^2 = 1, \ z = 2. \) \((6)\)

(c) Prove that the necessary and sufficient condition that a proper vector \(\vec{u}(t) \) has a constant magnitude is that \[\vec{u}(t) \cdot \frac{d\vec{u}}{dt}(t) = 0. \] \((4)\)

* * * * * *