MIZORAM PUBLIC SERVICE COMMISSION

Competitive Examinations for Recruitment to the post of Inspector of Factories under Labour, Employment, Skill Development & Entrepreneurship Department, Government of Mizoram, 2019

MECHANICAL ENGINEERING PAPER - III

	PAPER -	111					
Time Allow	ved: 2 hours		Full Marks : 200				
	All questions carry equal marks of 2 each. Attempt all questions.						
	ch one of the following is the process to refine nering or cold working?	the g	grains of metal after it has been distorted by				
(a)	Annealing	(b)	Softening				
(c)	Re-crystallizing	(d)	Normalizing				
2. In me	etals subjected to cold working, strain hardeni	ng ef	fect is due to -				
(a)	slip mechanism	(b)	twining mechanism				
(c)	dislocation mechanism	(d)	fracture mechanism				
(a) (b) (c) (d) 4. Hot r (a) (c) 5. The b (a) (b) (c) (d)	working of steel is defined as working - at its recrystallisation temperature above its recrystallisation temperature below its recrystallisation temperature at two thirds of the melting temperature of the olling of mild steel is carried out - at recrystallisation temperature below recrystallisation temperature blank diameter used in thread rolling will be - equal to minor diameter of the thread equal to pitch diameter of the thread a little large than the minor diameter of the th	(b) (d) read	between 100°C to 150°C above recrystallisation temperature				
6. An in called	naginary circle which by pure rolling action, d -	gives	s the same motion as the actual gear, and is				
(a)	addendum circle	(b)	pitch circle				
(c)	dedendum circle	(d)	base circle				
7. Threa	ad rolling is restricted to -						
(a)	ferrous materials	(b)	ductile materials				

(d) none of these

(c) hard materials

8.	Fabri	Sabrication weldability test is used to determine -					
	(a)	(a) mechanical properties required for satisfactory performance of welded joint					
	(b)	b) susceptibility of welded joint for cracking					
	(c)	suitability for joint design					
	(d)	appropriate machining process					
9.	Tip o	f the electrodes used in spot welding are made	of:				
	(a)	Soft Iron	(b)	Mild steel			
	(c)	Copper	(d)	Aluminium			
10.	Weld	ling is usually used to join the ends of two pipe	s of ı	uniform cross section.			
		Upset welding		Flash welding			
	(c)	Spot	(d)	Projection			
11.	Neut	ral flame cannot be used for welding -		-			
		Cast iron	(b)	Mild steel			
	` '	Copper and aluminium	` /	none of these			
12		of more acetylene with less volumes of c	` ,				
12.	050	flame.	My5	on in an oxyacetylene toren produces a			
	(a)	Neutral	(b)	Oxidising			
	(c)	Carburising	(d)	None of these			
13.	The	property of sand due to which it evolves a grea	at am	ount of steam and other gases is called -			
	_	Permeability		Cohesiveness			
	` /	Adhesiveness	` ′	None			
14.	Gree	n sand is a mixture of -	` /				
		30% sand and 70% clay	(b)	50% sand and 50% clay			
		70% sand and 30% clay	` ′	90% sand and 10% clay			
15		sting defect which occur near the ingates as ro	` ′	·			
13.		Shift	_	Sand wash			
	` /	Swell	` ′	Scab			
16	` /	operation of finishing a predrilled hole is know	. ,				
10.		Boring		Reaming			
	` /	Counter boring	` ′	Spot facing			
17	` ′	-	` ,				
17.		Which one of the following statements is correct in respect of unconventional machining processes? (a) The cutting tool is in direct contact with the job					
				material			
	` '	(b) The tool material needs to be harder than the job material(c) The tool is never in contact with the job					
		-	e too	l and the job			
1 Q	(d) There has to be a relative motion between the tool and the jobWhich of the following is/are used as low wearing tool material(s) in electric discharge machining?						
10.		Copper and brass		Aluminium and graphite			
		Silver tungsten and copper tungsten	` ′	Cast iron			
10			` ,				
19.		ectro-Discharge Machining (EDM), the tool is					
		Copper	. ,	High Speed Steel Plain Carbon Steel			
	(6)	Cast Iron	(u)	Plain Carbon Steel			

20.	In ECM, the material removal is due to -				
	(a) corrosion	(b)	erosion		
	(c) fusion	(d)	ion displacement		
21.	Which one of the following processes does not care	ise to	ol wear?		
	(a) Ultrasonic machining	(b)	Electrochemical machining		
	(c) Electric discharge machining	(d)	Anode mechanical machining		
22.	During ultrasonic machining, the metal removal is a	chiev	ved by -		
	(a) high frequency eddy currents	(b)	high frequency sound waves		
	(c) hammering action of abrasive particles	(d)	rubbing action between tool and workpiece		
23.	Chip equivalent is increased by -				
	(a) an increases in side-cutting edge angle of too	1			
	(b) an increase in nose radius and side cutting ed	lge ar	ngle of tool		
	(c) increasing the plant area of cut				
	(d) increasing the depth of cut				
24.	Which of the following is a single point cutting tool	?			
	(a) Hacksaw blade	(b)	Milling cutter		
	(c) Grinding wheel	(d)	Parting tool		
25.	For cutting of brass with single-point cutting tool of	n a la	the, tool should have -		
	(a) negative rake angle	(b)	positive rake angle		
	(c) zero rake angle	(d)	zero side relief angle		
26.	Single point thread cutting tool should ideally have	-			
	(a) zero rake	(b)	positive rake		
	(c) negative rake	(d)	normal rake		
27.	In ASA System, if the tool nomenclature is 8-6-5-	5-10-	15-2-mm, then the side rake angle will be		
	(a) 5°	(b)	6°		
	(c) 8°	(d)	10°		
28.	A built-up-edge is formed while machining -				
	(a) ductile materials at high speed	(b)	ductile materials at low speed		
	(c) brittle materials at high speed	(d)	brittle materials at low speed		
29.	In orthogonal cutting, shear angle is the angle betw	een -			
	(a) shear plane and the cutting velocity				
	(b) shear plane and the rake plane				
	(c) shear plane and the vertical direction				
	(d) shear plane and the direction of elongation of	f crys	tals in the chip		
30.	Thrust force will increase with the increase in -				
	(a) side cutting edge angle	(b)	tool nose radius		
	(c) rake angle	(d)	end cutting edge angle		
31.	As the cutting speed increases -				
	(a) more heat is transmitted to the workpiece an				
	(b) more heat is carried away by the chip and les				
	(c) more heat is transmitted to both the chip and the tool				

(d) more heat is transmitted to both the workpiece and the tool

32.	The f	front rake required to machine brass by HSS t	ool is	S				
	(a)	15°	(b)	5°				
	(c)	0°	(d)	-5°				
33.	Flank	k wear occurs mainly on which of the following?						
	(a)	Nose part and top face						
	(b)	Cutting edge only						
	(c)	Nose part, front relief face, and side relief face	ce of	the cutting tool				
	(d)	Face of the cutting tool at a short distance from	om th	ne cutting edge				
34.	Crate	er wear on tools always starts at some distanc	e froi	m the tool tip because at that point -				
	(a)	cutting fluid does not penetrate	(b)	normal stress on rake face is maximum				
	(c)	temperature is maximum	(d)	tool strength is minimum				
35.	Tool/	life is generally better when -						
		grain size of the metal is large						
		grain size of the metal is small						
	` '	hard constituents are present in the microstru	cture	e of the tool material				
	(d)	none of these						
36.	The i	ron ore mostly used for the production of pig	iron	is .				
		Magnetite		Hematite				
	(c)	Limonite	(d)	Pyrite				
37.	Fe ₃ C	is known as						
	(a)	Cementite	(b)	Ferrite				
	(c)	Austenite	(d)	None				
38.	The	nelting point of wrought iron is about		<u>_</u> .				
	(a)	1530°C	(b)	530°C				
	(c)	1539°C	(d)	None				
39.	The C	Cupola is used to manufacture	_•					
	(a)	Pig iron	(b)	Cast iron				
	(c)	Steel	(d)	None				
40.	18/8	steel contains						
	` /	18%Ni, 8%Cr	()	18% Cr, 8% Ni				
	(c)	18%Ni, 18%Cr	(d)	None				
41.		posite materials are -						
		made mainly to improve temperature resistan	ice					
		used for improved optical properties	1	1 0				
	(c)	made with strong fibres embedded in weake strength of matrix	r and	i softer matrix to obtain strength better than				
	(d)	made with strong fibres embedded in weake	r and	I softer matrix to obtain strength better than				
	()	strength of both matrix and filler						
42.	Cera	mic materials are -						
		inorganic compounds of metallic and non-me	tallic	elements				
	(b)	basically crystalline oxides or metals						
	(c)	good conductors of electricity						

(d) none of these

43.	Whic	ch one are inorganic materials -		
		biological materials	(b)	minerals and ceramics
	(c)	plastics	(d)	wood
44.	Usin	g cutting material which can sustain high tempe	eratui	^e -
		cerment		high carbon steel alloy
	()	composite of two metals		none of these
45.	` ′	nich of the following phases of steel cementite	` ,	
		Martensite	-	Ferrite
	` '	Pearlite	()	Bainite
46	` '	n FCC iron and BCC iron coexist in equilibriu	` ,	
70.	(a)	·	(b)	•
	(c)		(d)	
47	` '	eating, if one solid phase splits into two solid	()	
4/.		eutectoid	-	peritectoid
	` /	peritectic	` ′	eutectic
40	` /	1	` /	
48.		rate of cooling of a liquid metal is rapid, the te	_	
	` '	decrease remain constant	` ′	increase none of these
40	` '		` ,	
49.		ng of electrons between neighbouring atoms r		
	` '	metallic bond	` ′	ionic bond
- 0		covalent bond	(a)	none of these
50.		atomic number of an atom is equal to -	(1.)	
	` ′	atomic weight	` /	atomic mass
	` /	number of protons	. ,	mass number
51.		space lattices with two lattice parameters does		• •
	(a)	triclinic	(b)	
	(c)	hexagonal	(d)	tetragonal
52.		easing grain size in a polycrystalline material -		
	(a)	Increases yield strength and corrosion resista		
	(b)	Decreases yield strength and corrosion resist		
	(c)	Decreases yield strength but increases corros		
	(d)	Increases yield strength but decreases corros	1011 1	esistance
55.		n the temperature of a solid metal increases,		
	(a) (b)	Strength of the metal decreases but ductility in Both strength and ductility of the metal decreases.		ases
	(c)	Both strength and ductility of the metal increase		
	(d)	Strength of the metal increases but ductility d		ases
5	` /	•		
54.	wnic (a)	ch of the following statement is true about britt. High temperature and low strain rates favour		
	(a) (b)	Many metal with HCP crystal structure comm		
	(c)	Brittle fracture is always preceded by noise	.10111 <i>y</i>	one worthe macure
	()	J 1 J 15		

(d) Cup and cone formation is characteristic for brittle materials

55.	Mag	nesiu	m is e	xtrude	ed and	not ro	lled because -		
	(a)	It ha	s a lov	w melt	ting po	int		(b)	It has a low density
	(c)	Its re	eactiv	ity wit	h roll n	nateria	al is high	(d)	It has a dose-packed hexagonal structure
56.	Matc	h the	items	in Co	lumn I	and C	Column II.		
	<u>Column I</u>								Column II
			_	Charp				1.	
			Q	Knoop	test			2.	Micro hardness
			R.	Spiral	test			3.	Formability
			S.	Cuppi	ng test			4.	Toughness
								5.	Permeability
	(a)	P - 4	1, Q -	5, R	- 3, S	- 2		(b)	P - 3, Q - 5, R - 1, S - 4
	(c)	P - 2	2, Q -	4, R	- 3, S	- 5		(d)	P- 4, Q - 2, R - 1, S - 3
57.	With		ncrea	se of p	ercent	age o	f carbon in the st	eel, v	which one of the following properties does
	(a)	Mod	lulus d	of elast	ticity			(b)	Ductility
	(c)	Toug	ghness	S				(d)	Hardness
58.	A me	easure	of R	ockwe	ell hard	lness i	s the -		
	(a)	Dep	th of p	enetra	ation o	finde	nter	(b)	Surface area of indentation
	(c)	Proj	ected	area o	f inder	ntation	1	(d)	Height of rebound
59.	The 1	nater	ial pr	operty	which	depe	nds only on the b	asic	crystal structure is -
			-	rength		•	•		Work hardening
	(c)	Frac	ture s	trengt	h			(d)	Elastic constant
60.			,	rystal S Lists:	Structu	re) wi	th List-II (Exam	ple) a	nd select the correct answer using the codes
	J	List							List-II
	(C	rystal	Struc	cture)					(Example)
			ole Cı					1.	Zinc
	В.	Bod	y-cen	tered (Cubic			2.	Copper
	C.	Face	e-cent	ered (Cubic			3.	Alpha iron at room temperature
	D.	Hex	agona	al Clos	se Pack	ted		4.	Manganese
	Cod	es:	A	В	\mathbf{C}	D			
		(a)	4	3	1	2			
		(b)	4	3	2	1			
		(c)	3	4	2	1			
		(d)	3	4	1	2			
61.	The	nicro	struct	ure co	mposi	tion o	f pearlite for a Fe	e_3Cd	iagram consists of -
	(a)								tered cubic structure
	(b)	Carb	on di	ssolve	ed in ga	ıma ir	on having a face	cante	ered cubic structure

(c) A mixture of body-cantered alpha iron and face-entered gamma iron

(d) Carbon dissolved in body-cantered alpha iron and an Fe, Fe_3C

62.	The	coordination number for FCC crystal structure	is -	
	(a)	4	(b)	8
	(c)	12	(d)	16
63.		ch one of the following is the correct ascending	ng or	der of packing density for the given crystal
		tures of metals?		
	(a)	•		
		Body centred cubic - Simple cubic - Face ce		
	(c)	Simple cubic - Body centred cubic - Face ce Body centred cubic - Face centred cubic - Si		
(1	. ,	·	-	cubic
04.		ctic reaction for iron-carbon system occurs at 600°C		723°C
	` /	1147°C	` /	1493°C
(5	()		()	
03.		ch one of the following sets of constituents is exform austenitic state?	pecie	a in equinorium coomig of a hyperediectoid
		Ferrite and pearlite	(b)	Cementite and pearlite
		Ferrite and bainite	(d)	-
66.	Mart	ensite is a super-saturated solution of carbon i	n -	
	(a)	Alpha iron	(b)	Beta iron
	(c)	Gamma iron	(d)	Delta iron
67.	The	straight grades of cemented carbide cutting too	l mai	terials contain -
	(a)	Tungsten carbide only	(b)	Tungsten carbide and titanium carbide
	(c)	Tungsten carbide and cobalt	(d)	Tungsten carbide and cobalt carbide
68.	The i	iron-carbon diagram and the TTT curves are d	etern	nined under -
	(a)	Equilibrium and non-equilibrium conditions re	spect	tively
	(b)	Non-equilibrium and equilibrium conditions re	espec	tively
	(c)	Equilibrium conditions for both		
	(d)	Non-equilibrium conditions for both		
69.	TTT	diagram indicates time and temperature transfe	orma	tion of -
	(a)	Cementite	(b)	Pearlite
	(c)	Ferrite	(d)	Austenite
70.	The	complete phase recrystallization and fine grain s	struct	ure is obtained in casting, forging and rolled
	parts	-		
	` '	Recrystallization annealing	` ′	Normalizing
	(c)	Spheroidizing	(d)	Austenising
71.		ales forecasting, pooling of expert opinions is		
	` /	Statistical correlation	` ′	Delphi technique
	(c)	Moving average method	(d)	Exponential smoothing
72.		ch of the following is the measure of forecast en		
	` '	Mean absolute deviation	` /	Trend value
	(c)	Moving average	(d)	Price fluctuation

73.	. Which one of the following statements is not correct for the exponential smoothing method of demand forecasting?						
	(a) Demand for the most recent data is given more weightage						
	(b) This method requires only the current demand and forecast demand						
	(c) (d)	This method assigns weight to all the previou This method gives equal weightage to all the					
74	` /	ch one of the following methods can be used for	=				
/ T.		Time series analysis		Jury of executive opinion method			
		Sales force composite method		Direct survey method			
75.	` ′	ch of the following forecasting methods takes a	` '	•			
		od forecast?					
	(a)	Simple average method	(b)	Moving average method			
	(c)	Weighted moving average method	(d)	Exponential smoothening method			
76.		ing in production planning and control refers to					
		Balancing of load on machines	. ,	Authorization of work to be performed			
	` ′	Progress of work performed	` /	Sequence of operations to be performed			
77.		uction scheduling is simpler, and high volume o ase of:	f outp	but and high labour efficiency are achieved in			
		Fixed position layout	(h)	Process layout			
		Product layout		A combination of line and process layout			
78.	` /	th one of the following is true in respect of production					
, 00		Control is achieved by PERT network					
	(b)	Johnson algorithm is used for sequencing					
	(c)	Control is on one work centre only					
	(d)	Control is on flow of identical components th	roug	n several operations			
79.	A pro	oduction line is said to be balanced when					
	(a)	There are equal number of machines at each					
	(b)	There are equal number of operators at each					
	(c)	The waiting time for service at each station is		rame			
0.0	(d)	The operation time at each station is the same		111			
80.		year, a manufacturer produced 15000 produme, the fixed costs were Rs. 15.2 lacs and total					
		tity of product would be:	· vuii	able costs were its. 21 facs. The break even			
	(a)	4000	(b)	7800			
	(c)	8400	(d)	9500			
81.	In PE	ERT analysis a critical activity has -					
	(a)	Maximum Float	(b)	Zero Float			
	(c)	Maximum Cost	(d)	Minimum Cost			
82.		mmy activity is used in PERT network to desc					
	` '	Precedence relationship		Necessary time delay			
	(c)	Resource restriction	(d)	Resource idleness			

83. In PERT, the distribution of activity times is assumed to be:

(a) Normal

(b) Gamma

(c) Beta

(d) Exponential

84. The project activities, precedence relationships and durations are described in the table. The critical path of the project is:

Activity	Precedence	Duration (in days)
P	_	3
Q	_	4
R	P	5
S	Q	5
T	R, S	7
U	R, S	5
V	T	2
W	U	10

(a) P-R-T-V

(b) Q-S-T-V

(c) P-R-U-W

- (d) Q-S-U-W
- **85.** Dummy activities are used in a network to:
 - (a) Facilitate computation of slacks
- (b) Satisfy precedence requirements
- (c) Determine project completion time
- (d) Avoid use of resources
- **86.** Earliest finish time can be regarded as -
 - (a) EST + duration of activity

(b) EST – duration of activity

(c) LFT + duration of activity

(d) LFT – duration of activity

87. There are two products P and Q with the following characteristics

Product	Demand	Order Cost	Holding Cost
	(Units)	(Rs/order)	(Rs./unit/year)
P	100	50	4
Q	400	50	1

The economic order quantity (EOQ) of products P and Q will be in the ratio -

(a) 1:1

(b) 1:2

(c) 1:4

(d) 1:8

88. Economic Order Quantity is the quantity at which the cost of carrying is:

(a) Minimum

- (b) Equal to the cost of ordering
- (c) Less than the cost or ordering
- (d) Cost of over-stocking

89. In inventory control theory, the economic order quantity (E.O.Q.) is:

(a) Average level of inventory

- (b) Optimum lot size
- (c) Lot size corresponding to break-even analysis(d) Capacity of a warehouse

90. If orders are placed once a month to meet an annual demand of 6,000 units, then the average inventory would be:

(a) 200

(b) 250

(c) 300

(d) 500

91.	The f	irst algorithm for Linear Programming was give	en by	:
	(a)	Bellman	(b)	Dantzig
	(c)	Kulm	(d)	Van Neumann
92.	A fea	sible solution to the linear programming proble	em sł	nould -
	(a)	Satisfy the problem constraints		
	(b)	Optimize the objective function		
	(c)	Satisfy the problem constraints and non-negat	ivity	restrictions
	(d)	Satisfy the non-negativity restrictions		
93.	Whic	ch one of the following is true in case of simples	x met	hod of linear programming?
	(a)	The constants of constraints equation may be	posi	tive or negative
	(b)	Inequalities are not converted into equations		
	(c)	It cannot be used for two-variable problems		
	(d)	The simplex algorithm is an iterative procedure	re	
94.	The	cost of providing service in a queuing system in	ncrea	ses with -
	(a)	Increased mean time in the queue	(b)	Increased arrival rate
	(c)	Decreased mean time in the queue	(d)	Decreased arrival rate
95.	Little	e's law is a relationship between:		
	(a)	Stock level and lead time in an inventory syste	em	
	(b)	Waiting time and length of the queue in a queu	aing s	system
	(c)	Number of machines and job due dates in a so	chedu	ıling problem
	(d)	Uncertainty in the activity time and project co	mple	tion time
96.	Serv	ice time in queuing theory is usually assumed to	follo	ow:
	(a)	Normal distribution	(b)	Poisson's distribution
	(c)	Erlang distribution	(d)	Exponential law
97.		number of arrivals in a queue follows the Poiss h one of the following distributions?	son d	istribution, then the inner arrival time obeys
	(a)	Poisson's distribution	(b)	Negative exponential law
	(c)	Normal distribution	(d)	Binomial
98.	-	ueuing problem, if the arrivals are completely ra	ındon	n, then the probability distribution of number
	(a)	Poisson distribution	(b)	Normal distribution
	(c)	Binomial distribution	(d)	Exponential distribution
99.		ch one of the following conditions should be sat I solution of transportation model?	tisfie	d for the application of optimality test on ar
		Number of allocations should be less than m	+ n -	- 1
	(b)	Number of allocations should be equal to m	+ n –	1
	(c)	Number of allocations should be equal to m	⊦ n	
	(d)	Number of allocations should be more than n	n + n	
100.	In a t	ransportation problem North-West corner rule	wou	ıld yield
		An optimum solution		An initial feasible solution
		A Vogel's approximate solution	(d)	A minimum cost solution