MIZORAM PUBLIC SERVICE COMMISSION

General Competitive Examinations for Recruitment to the post of Junior Grade of Mizoram Planning, Economics & Statistical Service under Planning & Programme Implementation Department. January, 2020

MATHEMATICS PAPER-I

Time Allowed : 3 hours

Full Marks: 100

(2+8=10)

Marks for each question is indicated against it.

Directions (Question No. 1 - 3): Attempt any 2 (two) questions.

1. Define discontinuity of the first kind and second kind. Show that the function define by

$$f(x) = \begin{cases} 1 & (x \, rational) \\ 0 & (x \, irrational) \end{cases}$$

has discontinuity of the second kind at every point.

- 2. Show that the sequence of functions {f_n} defined on E converges uniformly on E if and only if for every ε > 0 there exists an integer N such that m≥N, n≥N, x∈E implies |f_n(x)-f_m(x)|≤ε
- 3. (a) If z is the function of x and y and $x^{x} y^{y} z^{z} = c$ then show that $\frac{\partial^{2} z}{\partial x \partial y} = -(x \log ex)^{-1}$ when x = y = z. (4)
 - (b) If $f(x, y) = x^2 + xy y^2$, then find $f_{yx}(1,2) f_{yx}(1,2)$ by using the definition of partial derivatives. (3)
 - (c) Obtain Taylor's expansion of $f(x, y) = \cos(x + y)$ at the point (0,0) for n = 3. (3)

Directions (Question No. 4 - 6): Attempt any 2 (two) questions.

- (a) A normal linear space E is a Branch space if and only if every absolutely summable sequence in E is summable in E.
 (5)
 - (b) Show that an additive and homogeneous operator A be continuous, it is necessary and sufficient that it is bounded. (5)
- 5. Show that the norm in an inner product space satisfy parallelogram inequality. And hence show that the space $\delta[a,b]$ of all continuous real-valued function defined on [a,b] with norm defined

by
$$||x|| = \max_{t \in [a,b]} |x(t)|$$
 is not an inner product space (4+6=10)

- 6. (a) If A is the bounded linear operator in Helbert space H, and A^* is the adjoint of A, then show that
 - (i) $A^{**} = A$ (ii) $(A^{*})^{-1} = (A^{-1})^{*}$. (4)

(b) If P is projection in Helbert space then show that P is a self-adjoint operator with its norm equal to one and P satisfies $P^2 = P$. (6)

Directions (Question No. 7 - 9): Attempt any 2 (two) questions.

- 7. What is the difference between homomorphism and isomorphism? Show that a homomorphism ϕ of G into \overline{G} with kernel K is an isomorphism if and only if $K = \{e\}$. (2+8=10)
- 8. Define Euclidean ring. Let R be an Euclidean ring, then show that any two elements a and b in R have a greatest common divisor d. Moreover show that $d = \lambda a + \mu b$ for some $\lambda, \mu \in R$.

9. Let
$$S = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} | a, b \in Z \right\}$$
 (10)

- (i) Check that S is a subring of $M_2(R)$ and it is a commutative ring with identity.
- (ii) Is S an ideal of $M_2(R)$? Justify your answer.
- (iii) Is S an integral domain ? Justify your answer.
- (iv) Find all the units of the ring S.
- (v) Check whether $T = \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} | a, b \in \mathbb{Z}, 2 | a \right\}$ is an ideal of S.

Directions (Question No. 10 - 12): Attempt any 2 (two) questions.

- 10. (a) Let $X = \{a, b, c\}$ and $T = \{\varphi, x, \{b\}, \{a, c\}\}$. Find interior, closure and set of all limit points of the set $\{a, b\}$. (4)
 - (b) In a topological space $\{X, T\}$ if $A \subset X$, then prove that

(i)
$$A = A^0 \cup b(A)$$
, (ii) $A^0 = A - b(A)$. (6)

11. (a) Define base of a topology.

For $X = \{1, 2, 3, 4\}$ and $A = \{\{1, 2\}, \{2, 4\}, \{3\}\}$ determine the topology on X generated by the elements of A and hence determine the base for this topology. (5)

- (b) Show that a mapping $f: X \to Y$ is continuous if and only if $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$, for any $B \subset Y$. (5)
- 12. Define Hausdorff space. Show that that every compact subset of a Hausdorff space is closed.

(2+8=10)

(5)

(2+8=10)

Directions (Question No. 13 - 15): Attempt any 2 (two) questions.

- 13. Derive the Lagrange's equations for a conservative and holonomic dynamical system. (10)
- 14. Derive Hamilton's equations of motion for a simple pendulum. (10)
- **15.** (a) Setup the Lagrangian for a simple pendulum and obtain an equation describing its motion.
 - (b) Obtain Lagrange's equation of motion for a system under finite forces. (5)