MIZORAM PUBLIC SERVICE COMMISSION

General Competitive Examinations for Recruitment to the post of Junior Grade of Mizoram Planning, Economics \& Statistical Service under Planning \& Programme Implementation Department.
 Jandary, 2020

MATHEMATICS PAPER-I

Time Allowed : 3 hours
Full Marks : 100

Marks for each question is indicated against it.

Directions (Question No. 1-3): Attempt any 2 (two) questions.

1. Define discontinuity of the first kind and second kind. Show that the function define by $f(x)=\left\{\begin{array}{lr}1 & (\text { xrational }) \\ 0 & (x \text { xirrational })\end{array}\right.$
has discontinuity of the second kind at every point.
2. Show that the sequence of functions $\left\{f_{n}\right\}$ defined on E converges uniformly on E if and only if for every $\varepsilon>0$ there exists an integer N such that $m \geq N, n \geq N, x \in E$ implies $\left|f_{n}(x)-f_{m}(x)\right| \leq \varepsilon$
3. (a) If z is the function of x and y and $x^{x} y^{y} z^{z}=c$ then show that $\frac{\partial^{2} z}{\partial x \partial y}=-(x \log e x)^{-1}$ when $x=y=z$.
(b) If $f(x, y)=x^{2}+x y-y^{2}$, then find $f_{y x}(1,2) f_{y x}(1,2)$ by using the definition of partial derivatives.
(c) Obtain Taylor's expansion of $f(x, y)=\cos (x+y)$ at the point $(0,0)$ for $n=3$.

Directions (Question No. 4-6): Attempt any 2 (two) questions.

4. (a) A normal linear space E is a Branch space if and only if every absolutely summable sequence in E is summable in E.
(b) Show that an additive and homogeneous operator A be continuous, it is necessary and sufficient that it is bounded.
5. Show that the norm in an inner product space satisfy parallelogram inequality. And hence show that the space $ð[a, b]$ of all continuous real-valued function defined on $[a, b]$ with norm defined by $\|x\|=\max _{t \in[a, b]}|x(t)|$ is not an inner product space
6. (a) If A is the bounded linear operator in Helbert space H, and A^{*} is the adjoint of A, then show that
(i) $A^{* *}=A$
(ii) $\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}$.
(b) If P is projection in Helbert space then show that P is a self-adjoint operator with its norm equal to one and P satisfies $P^{2}=P$.

Directions (Question No. 7-9): Attempt any 2 (two) questions.

7. What is the difference between homomorphism and isomorphism? Show that a homomorphism ϕ of G into \bar{G} with kernel K is an isomorphism if and only if $K=\{e\}$.
$(2+8=10)$
8. Define Euclidean ring. Let R be an Euclidean ring, then show that any two elements a and b in R have a greatest common divisor d. Moreover show that $d=\lambda a+\mu b$ for some $\lambda, \mu \in R$.
9. $\operatorname{Let} S=\left\{\left.\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right] \right\rvert\, a, b \in Z\right\}$
(i) Check that S is a subring of $M_{2}(R)$ and it is a commutative ring with identity.
(ii) Is S an ideal of $M_{2}(R)$? Justify your answer.
(iii) Is S an integral domain? Justify your answer.
(iv) Find all the units of the ring S.
(v) Check whether $T=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]|a, b \in Z, 2| a\right\}$ is an ideal of S.

Directions (Question No. 10-12): Attempt any 2 (two) questions.

10. (a) Let $X=\{a, b, c\}$ and $T=\{\varphi, x,\{b\},\{a, c\}\}$. Find interior, closure and set of all limit points of the set $\{a, b\}$.
(b) In a topological space $\{X, T\}$ if $A \subset X$, then prove that
(i) $\bar{A}=A^{0} \cup b(A)$,
(ii) $A^{0}=A-b(A)$.
11. (a) Define base of a topology.

For $X=\{1,2,3,4\}$ and $A=\{\{1,2\},\{2,4\},\{3\}\}$ determine the topology on X generated by the elements of A and hence determine the base for this topology.
(b) Show that a mapping $f: X \rightarrow Y$ is continuous if and only if $\overline{f^{-1}(B)} \subset f^{-1}(\bar{B})$, for any $B \subset Y$.
12. Define Hausdorff space. Show that that every compact subset of a Hausdorff space is closed.
$(2+8=10)$

Directions (Question No. 13-15): Attempt any 2 (two) questions.

13. Derive the Lagrange's equations for a conservative and holonomic dynamical system.
14. Derive Hamilton's equations of motion for a simple pendulum.
15. (a) Setup the Lagrangian for a simple pendulum and obtain an equation describing its motion.
(b) Obtain Lagrange's equation of motion for a system under finite forces.
