MIZORAM PUBLIC SERVICE COMMISSION ## Competitive Examinations for Recruitment to the post of Inspector of Factories under Labour, Employment, Skill Development & Entrepreneurship Department, Government of Mizoram, 2019 ## ELCTRICAL ENGINEERING PAPER - II Time Allowed: 2 hours Full Marks: 200 All questions carry equal marks of 2 each. Attempt all questions. | | | Attempt all que | estion | <i>18</i> . | | | |-----|--|--|--------|------------------------------------|--|--| | 1. | 1. A good control system has all the following features except - | | | | | | | | (a) | Good stability | (b) | Slow response | | | | | (c) | Good accuracy | (d) | Sufficient power handling capacity | | | | 2. | The i | nitial response when the output is not equal to | inpu | t is called - | | | | | (a) | Transient response | (b) | Error response | | | | | (c) | Dynamic response | (d) | All of these | | | | 3. | A con | ntrol system with excessive noise is likely to su | ıffer | from - | | | | | (a) | Saturation in amplifying stage | (b) | Loss of gain | | | | | (c) | Vibration | (d) | Oscillation | | | | 4. | Trans | sfer function of a system is used to calculate wh | nich c | of the following? | | | | | (a) | The order of the system | (b) | The time constant | | | | | (c) | The output for any given input | (d) | The steady state gain | | | | 5. | The | position and velocity errors of a type-2 system | n are | - | | | | | (a) | Constant, constant | (b) | Constant, infinity | | | | | (c) | Zero, constant | (d) | Zero, zero | | | | 6. | Phase | e margin of a system is used to specify which o | fthe | following? | | | | | (a) | Frequency response | (b) | Absolute stability | | | | | (c) | Relative stability | (d) | Time response | | | | 7. | If the | gain of the critical damped system is increase | d it v | vill behaves as - | | | | | (a) | oscillatory | (b) | critically damped | | | | | (c) | over damped | (d) | under damped | | | | 8. | Gain | margin is the factor by which the gain of the s | ysten | n is increased to make it - | | | | | (a) | damped | (b) | oscillatory | | | | | (c) | stable | (d) | unstable | | | | 9. | For re | oot loci which of the following are starting poi | nts? | | | | | | (a) | open loop zeros | (b) | closed loop zeros | | | | | (c) | closed loop poles | (d) | open loop poles | | | | 10. | Nyqu | uist criterion is used to find which of the follow | ing? | | | | | | (a) | absolute stability | (b) | relative stability | | | | | (c) | both (a) & (b) | (d) | none of these | | | | | alid for - | | | |--|---|---|--| | (a) minimum pha | ase network | (b) | all phase network | | (c) non-minimum | n phase network | (d) | none of the above | | 12. The transfer function | on is $\frac{1+0.5S}{1+S}$. It represents a | - | | | (a) lead network | - | (b) | lag network | | (c) lag-lead netw | /ork | (d) | proportional network | | 13. A phase lag compen | nsation will - | | | | (a) improve relati | ive stability | (b) | increase the speed of response | | (c) increase band | lwidth | (d) | increase overshoot | | 14. The phase angle for | r the transfer function $G(S) =$ | $=\frac{1}{(1+ST)^2}$ | $\frac{1}{2}$ at corner frequency is - | | (a) -45° | | (b) | -900 | | (c) -135° | | (d) | -270^{0} | | 15. Signal flow graph i | s used to find - | | | | (a) stability of the | e system | (b) | controllability of the system | | (c) transfer funct | cion of the system | (d) | poles of the system | | 16. Nichol's chart is us | eful for detailed study and ana | alysis of | ?- | | (a) closed loop fa | requency response | (b) | open loop frequency response | | | d open loop frequency respons | | | | 17. What is the steady s ramp input? | state error for a unity feedback | control | system having $G(S) = \frac{1}{S(S+1)}$ due to unit | | | | | | | | | (b) | 0.5 | | (a) 1 | | (b) | | | (a) 1
(c) 0.25 | 16 1 4 4 4 1 4 | (d) | $\sqrt{0.5}$ | | (a) 1(c) 0.2518. The instrument use | ed for plotting the root locus is | (d) called | $\sqrt{0.5}$ | | (a) 1(c) 0.2518. The instrument use(a) Slide rule | ed for plotting the root locus is | (d) called (b) | $\sqrt{0.5}$ Spirule | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro | | (d) called (b) (d) | $\sqrt{0.5}$ Spirule Selsyn | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the formula in the content of c | ollowing techniques is utilized | (d) called (b) (d) | $\sqrt{0.5}$ Spirule | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina | ollowing techniques is utilized ary axis? | (d) called (b) (d) to deter | $\sqrt{0.5}$. Spirule Selsyn mine the actual point at which the root locus | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the formula in the content of c | ollowing techniques is utilized ary axis? | (d) called (b) (d) to deter (b) | $\sqrt{0.5}$ Spirule Selsyn | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technology (b) Nichology | ollowing techniques is utilized ary axis?
nique
prion | (d) called (b) (d) to deter (b) (d) | $\sqrt{0.5}$ Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technology (b) Nichology | ollowing techniques is utilized ary axis?
nique
prion | (d) called (b) (d) to deter (b) (d) | $\sqrt{0.5}$ Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist techn (c) Nichol's crite 20. The polar plot of a feater | ollowing techniques is utilized ary axis?
nique
prion | (d) called (b) (d) to deter (b) (d) gh the c (b) | $\sqrt{0.5}$ Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is - | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technic (b) Nichol's crite 20. The polar plot of a result result | ollowing techniques is utilized
ary axis?
nique
erion
transfer function passes throu | (d) called (b) (d) to deter (b) (d) gh the c (b) (d) | Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is 1 dB infinity | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technic (b) Nichol's crite 20. The polar plot of a result result | ollowing techniques is utilized ary axis?
nique
prion | (d) called (b) (d) to deter (b) (d) ugh the co (b) (d) n margin | Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is 1 dB infinity | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the forcrosses the imagina (a) Nyquist techn (c) Nichol's crite 20. The polar plot of a region of the local plot (a) zero (b) 1 dB 21. If the gain of the local plot | ollowing techniques is utilized
ary axis?
nique
erion
transfer function passes throu | (d) called (b) (d) to deter (b) (d) gh the c (b) (d) margin (b) | $\sqrt{0.5}$ Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is - - 1 dB infinity of the system is - | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technic (b) Nichol's crite 20. The polar plot of a result result | ollowing techniques is utilized
ary axis?
nique
erion
transfer function passes throu | (d) called (b) (d) to deter (b) (d) gh the c (b) (d) margin (b) (d) | Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is 1 dB infinity of the system is - doubled one fourth of original value | | (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technic (b) Nichol's crite 20. The polar plot of a result result | ollowing techniques is utilized ary axis? nique erion transfer function passes throu op system is doubled, the gain | (d) called (b) (d) to deter (b) (d) gh the c (b) (d) margin (b) (d) rmined | Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is 1 dB infinity of the system is - doubled one fourth of original value | | 23. | Consider the loop transfer function $G(S)H(S) =$ | K | $\frac{C(S+6)}{C(S+6)}$. In the root-locus diagram, the | |-----|--|---------|--| | | centroid will be located at - | (S + | -3)(S+5) | | | (a) -4 | (b) | - 1 | | | (c) -2 | | - 3 | | 24. | Consider the following equation $2S^4 + S^3 + 3S^{2+}$ | ` / | | | | have in the right half of 'S' plane? | | | | | (a) one | () | two | | | (c) three | ` / | four | | 25. | If the gain margin of a certain feedback system is negative real axis at the point - | give | n as 20 dB, the Nyquist plot will cross the | | | (a) $S = -0.05$ | (b) | S = -0.2 | | | (c) $S = -0.1$ | (d) | S = -0.01 | | 26. | Derivative feedback control - | | | | | (a) increase feedback time | (b) | increase overshoot | | | (c) decrease steady state error | (d) | does not affect the steady state error | | 27. | When the time period of observation is large, the t | ype o | of the error is - | | | (a) Transient error | (b) | Steady state error | | | (c) Half power error | (d) | Position error constant | | 28. | The maximum overshoot of a second order system | n can | be increased by - | | | (a) decreasing damping frequency | | increasing natural frequency | | | (c) increasing damping factor | (d) | all of these | | 29. | The Root-locus are the plots of the variations of the | ne po | les of the closed loop system function with | | | changes in - | • | | | | (a) open loop gain | (b) | open loop poles | | | (c) closed loop zeros | (d) | none of these | | 30. | Type 0 system has - | | | | | (a) high gain constant | (b) | small steady state error | | | (c) either (a) or (b) | (d) | both (a) & (b) | | 31. | The eigen values of a linear system are the location | ns of - | | | | (a) finite poles | (b) | poles of the system | | | (c) zeros of the system | (d) | none of these | | 32. | In control systems stepper motors can be used for | - | | | | (a) tape drives | (b) | capstan drives | | | (c) computers | (d) | none of these | | 33. | A closed loop system is distinguished from open lo | op sy | stem by which of the following? | | | (a) Servomechanism | | Feedback | | | (c) Output pattern | (d) | Input pattern | | 34. | The voltage build up process of a d.c. generator is | ` / | • • | | , | (a) difficult | | delayed | | | (c) cumulative | | infinite | | 35. | The induced EMF in the armature conductors of a d.c. motor is - | | | | | |------------|---|--|---------|---|--| | | (a) | sinusoidal | (b) | trapezoidal | | | | (c) | rectangular | (d) | alternating | | | 36. | In an | ideal transformer - | | | | | | (a) | winding have no resistance | (b) | core has no losses | | | | (c) | core has infinite permeability | (d) | all of these | | | 37. | If the | e pole flux of a d.c. motor approaches zero, its | spee | ed will - | | | | | approaches zero | • | | | | | (b) | approaches infinity | | | | | | (c) | no change due to corresponding change in ba | ck er | mf | | | | (d) | approaches a stable value somewhere betwee | n zer | o and infinity | | | 38. | The | nain purpose of using core in transformer is to |) – | | | | | (a) | decrease iron losses | | | | | | (b) | prevent eddy current loss | | | | | | (c) | eliminate magnetic hysteresis | | | | | | (d) | decrease reluctance of the common magnetic | circu | uit | | | 39. | Trans | sformer cores are laminated in order to - | | | | | | (a) | simplify its construction | (b) | minimize eddy current loss | | | | (c) | reduce cost | (d) | reduce hysteresis loss | | | 40. | In pe | rforming the short circuit test of a transformer | - | | | | | - | high voltage side is usually short circuited | | low voltage side is usually short circuited | | | | (c) | any side is short circuited with preference | (d) | none of these | | | 41. | No lo | oad test on a transformer is carried out to dete | rmin | e - | | | | (a) | copper loss | (b) | magnetizing current | | | | ` ' | magnetizing current and no load loss | ` ′ | efficiency of the transformer | | | 42. | The e | effect of increasing the length of air-gap in an i | nduc | tion motor will be to increase the - | | | | | power factor | | speed | | | | | magnetizing current | (d) | air-gap flux | | | 43. | The r | power factor of a squirrel-cage induction motor | or is - | | | | | - | low at light loads only | | low at heavy loads only | | | | (c) | low at light and heavy loads both | ` ′ | low at rated load only | | | 44. | A 6-r | pole, 50 Hz, 3-phase induction motor has a ful | ll loa | d speed of 950 rpm. At half-load, its speed | | | | - | d be - | | 1 1 | | | | (a) | 475 rpm | (b) | 500 rpm | | | | (c) | 975 rpm | (d) | 1000 rpm | | | 45. | The f | fractional slip of an induction motor is the ratio |) - | | | | | (a) | rotor Cu loss/rotor input | (b) | stator Cu loss/stator input | | | | (c) | rotor Cu loss/rotor output | (d) | rotor Cu loss/stator Cu loss | | | 46. | The | efficiency and p.f. of a SCIM increases in prop | ortio | on to its - | | | | (a) | speed | (b) | mechanical torque | | | | (c) | voltage | (d) | rotor torque | | | 47. | For proper parallel operations, a.c. polyphase alter | rnato | rs must have the same - | |-----|---|---------|---| | | (a) speed | (b) | voltage rating | | | (c) kVA rating | (d) | excitation | | 48. | A two-winding transformer is used as an auto-tran compared to the two winding transformer will be - | sforn | ner. The kVA rating of the auto transformer | | | (a) 3 times | (b) | 2 times | | | (c) 1.5 times | (d) | same | | 49. | The synchronous reactance is the - | | | | | (a) Reactance due to armature reaction of the ma | achin | e | | | (b) Reactance due to leakage flux | | | | | (c) Combined reactance due to leakage flux and | arma | ature reaction | | | (d) Reactance either due to armature reaction or | leaka | age flux | | 50. | If the applied voltage to a dc machine is 230 V, then | n the l | back emf for maximum power delivered is- | | | (a) 115 V | (b) | 200 V | | | (c) 230 V | (d) | 460 V | | 51. | If the speed of a dc motor increases with load torc | լue, tl | nen it is a - | | | (a) series motor | (b) | permanent magnet motor | | | (c) differentially compound motor | (d) | cumulatively compound motor | | 52. | The rotor power output of a 3-phase induction mo 4% will be - | tor is | 15 kW. The rotor copper losses at a slip of | | | (a) 600 W | (b) | 625 W | | | (c) 650 W | (d) | 700 W | | 53. | Stepper motor are mostly used for - | | | | | (a) high power requirements | (b) | control system applications | | | (c) very high speed of operation | (d) | very low speed of operation | | 54. | An induction motor having 8 poles runs at 727.5 rprotor will have a frequency of - | m. If t | the supply frequency is 50 Hz, the emf in the | | | (a) 1.5 Hz | (b) | 48.5 Hz | | | (c) 51.5 Hz | (d) | 75 Hz | | 55. | The field coils of D.C. generators are usually made | e of - | | | | (a) mica | (b) | copper | | | (c) cast iron | (d) | carbon | | 56. | In lap winding, the number of brushes is always - | | | | | (a) double the number of poles | (b) | same as the number of poles | | | (c) half the number of poles | (d) | two | | 57. | Brushes of D.C machines are made of - | | | | | (a) carbon | (b) | soft copper | | | (c) hard copper | (d) | all of these | | 58. | The purpose of providing dummy coils in a genera | tor is | - | | | (a) to enhance flux density | | to amplify voltage | | | (c) to provide mechanical balance for the rotor | (d) | to reduce eddy currents | | 59. | The polarity of a D.C. generator can be | reversed by - | | |------------|---|--------------------|---| | | (a) reversing the field current | | | | | (b) increasing field current | | | | | (c) reversing field current as well as dir | rection of rotati | on | | | (d) none of these | | | | 60. | The number of brushes in a commutator | depends on - | | | | (a) speed of armature | (b) | type of winding | | | (c) voltage | (d) | amount of current to be collected | | 61. | In a D.C. generator the critical resistance | e refers to the re | esistance of - | | | (a) brushes | (b) | field | | | (c) armature | (d) | load | | 62. | If a D.C. motor is to be selected for conv | eyors, which m | notor would be preferred? | | | (a) series motor | (b) | shunt motor | | | (c) differentially compound motor | (d) | cumulative compound motor | | 63. | The speed of a D.C. series motor is - | | | | | (a) proportional to the armature curren | ıt | | | | (b) proportional to the square of the ar | mature current | | | | (c) proportional to field current | | | | | (d) inversely proportional to the armatu | ire current | | | 64. | Which of the following motors one will c | hoose to drive t | he rotary compressor? | | | (a) D.C shunt motor | (b) | D.C series motor | | | (c) Universal motor | (d) | Synchronous motor | | 65. | The term 'cogging' is associated with - | | | | | (a) three phase transformer | (b) | compound generators | | | (c) D.C. series motor | (d) | induction motors | | 66. | The condition for maximum efficiency for | or a D.C. genera | tor is - | | | (a) eddy current loss = stray loss | (b) | hysteresis losses = eddy current losses | | | (c) copper $loss = 0$ | (d) | variable losses = constant losses | | 67. | Power transformers are designed to have | maximum effic | iency at - | | | (a) nearly full load | (b) | 70% full load | | | (c) 50% full load | (d) | no load | | 68. | Natural oil cooling is used for transformed | er upto a rating | of- | | | (a) 3000 kVA | (b) | 1000 kVA | | | (c) 500 kVA | (d) | 250 kVA | | 69. | A Buchholz relay can be installed on - | | | | | (a) auto-transformer | (b) | air-cooled transformer | | | (c) welding transformer | (d) | oil cooled transformer | | 70. | The value of flux involved in the e.m.f. ed | quation of a tran | sformer is - | | | (a) average value | (b) | r.m.s. value | | | (c) maximum value | (d) | instantaneous value | | 71. | Which type of winding is used in 3-phase shell-type transformer? | | | | |------------|--|---|---------|--| | | (a) | circular type | (b) | sandwich type | | | (c) | cylindrical type | (d) | rectangular type | | 72. | The 'c | crawling' in an induction motor is caused by- | | | | | (a) | high loads | (b) | low voltage supply | | | (c) | improper design of machine | (d) | harmonics developed in the motor | | 73. | In the | circle diagram for induction motor, the diame | eter o | of the circle represents - | | | (a) | slip | (b) | rotor current | | | (c) | running torque | (d) | line voltage | | 74. | The sl | kin effect does not depends on - | | | | | (a) | nature of material | (b) | size of wire | | | (c) | supply frequency | (d) | temperature | | 75. | ACSF | R conductor have the central core made of - | | | | | (a) | copper | (b) | steel | | | (c) | aluminium | (d) | cadmium | | 76. | Ferra | nti effect on long overhead line is experience | d wh | en it is - | | | (a) | lightly loaded | (b) | on full load at unity pf | | | (c) | on full load at 0.8 pf | (d) | on full load at zero pf | | 77. | Byusi | ing guard ring in a transmission line, its string of | effici | ency- | | | (a) | increase | (b) | decrease | | | (c) | remain constant | (d) | none | | 78. | Major | r share of power produced in India is through | | | | | | thermal plants | ` ′ | hydroelectric plants | | | | nuclear plants | (d) | diesel plant | | 79. | | nost common type of unsymmetrical fault is - | | | | | ` ' | single line to ground | | double line to ground | | | . , | line to line | ` ´ | three phase | | 80. | _ | ositive, negative and zero sequence impedar
condition always follow the relation - | nces | of a solidly grounded system under steady | | | (a) | $Z_1 > Z_2 > Z_0$ | | $Z_1 < Z_2 < Z_0$ | | | (c) | $Z_0 < Z_1 < Z_2$ | (d) | $Z_0 = Z_1 = Z_2$ | | 81. | - | dro power stations, what is an enlarged bod
ating reservoir, called? | ly of | water just above the intake and used as a | | | (a) | Spillways | (b) | Forebay | | | (c) | Reservoir | (d) | Penstock | | 82. | How 1 | many relays are used to detect inter phase fau | lt of a | a three line system? | | | (a) | One | (b) | Two | | | (c) | Three | (d) | Six | | 83. | | aily energy produced in a thermal power stat aximum demand of the station? | ion i | s 720 MWh at a load factor of 0.6. What is | | | (a) | 50 MW | (b) | 30 MW | (d) 720 MW (c) 72 MW | 84. | In a . | 3-phase, 5 kV, 5 MVA system, what is the ba | ise im | ipedance? | |--|--------|---|------------|---| | | (a) | 5 ohms | (b) | 50 ohms | | | (c) | 500 ohms | (d) | 0.5 ohms | | 85. | | mum efficiency of modern coal-fired steam-r
(a low value), mainly because of - | aising | g thermal power plants is restricted to about | | | (a) | low alternator efficiency | | | | | | high energy loss in boilers | | | | | ` ' | low steam turbine mechanical efficiency | | | | | (d) | high energy loss from turbine exhaust to cond | dense | r | | 86. | The ı | use of high speed CB - | | | | | (a) | reduces the short circuit current | (b) | improves system stability | | | (c) | decreases system stability | (d) | increases the shorter circuit current | | 87. | Equa | l area criteria given the information respondin | g - | | | | (a) | stability region | (b) | absolute stability | | | (c) | relative stability | (d) | swing curves | | 88. | Equa | l area criteria is applicable for - | | | | | (a) | single machine system | (b) | two-machine system | | | (c) | multi-machine system | (d) | any one of the above | | 89. | | Y _{bus} matrix of a 100 bus interconnected system in the system must be - | is 90° | % sparse. Hence the number of transmission | | | (a) | 450 | (b) | 500 | | | (c) | 900 | (d) | 1000 | | 90. | _ | nerated station has a maximum demand of 30 r of 50%. The reserve capacity of the plant is | | V, a load factor of 60% and a plant capacity | | | (a) | 5 MW | (b) | 4 MW | | | (c) | 6 MW | (d) | 10 MW | | 91. | | e HVDC system, the ac harmonics which go
erters are - | ets ef | fectively eliminated with 12 pulse bridge | | | ` ′ | triplen harmonics | () | triplen and 5 th harmonics | | | (c) | triplen, 5 th and 7 th harmonics | (d) | 5 th and 7 th harmonics | | 92. | If the | excitation of the synchronous generators fail | ls, it a | icts as a - | | | (a) | synchronous motor | | synchronous generator | | | (c) | induction motor | (d) | induction generator | | 93. | If the | e inertia constant H of a machine of 200 MV.
be - | A is 2 | 2 p.u. its value corresponding to 400 MVA | | | (a) | 4.0 p.u. | (b) | 2.0 p.u. | | | (c) | 1.0 p.u. | (d) | 0.5 p.u | | 94. | A lig | htning arrestor connected between the line an | ıd ear | th in a power system to - | | | (a) | protects the terminal equipment against travel | llings | surges | | | (b) | protects the transmission line against lightning | g stro | ke | | (c) suppresses high frequency oscillations in the line | | | | | (d) reflects back the travelling wave approaching it | 95. | The insulation of modern EHV lines is designed based on - | | | | |------|--|--|-------|--------------------------------------| | | (a) | the lightning voltage | (b) | corona | | | (c) | radio interference | (d) | switching voltage | | 96. | In a p | power station, the cost of generation of power | redu | ces most effectively when - | | | (a) | diversity factor alone increases | | | | | (b) | both diversity factor and load factor increase | | | | | (c) | load factor alone increases | | | | | (d) | both diversity factor and load factor decrease | 2 | | | 97. | The | relay which is most sensitive to power swings i | is - | | | | | Mho relay | (b) | Reactance relay | | | (c) | Impedance relay | (d) | All are equally affected | | 98. | 3. If the fault current is 2 kA, the relay setting is 50% and the C.T ratio is 400/5, then the plug setting multiplier of a relay will be - | | | | | | (a) | 5 | (b) | 7 | | | (c) | 8 | (d) | 10 | | 99. | A vo | Itage control bus is characterised by the specif | ied - | | | | (a) | real and reactive powers | (b) | real power and voltage phase angle | | | (c) | real power and voltage magnitude | (d) | reactive power and voltage magnitude | | 100. | Norn | nally Z _{bus} matrix is a - | | | | | (a) | Null matrix | (b) | Sparse matrix | | | (c) | Full matrix | (d) | Unity matrix | | | | | | | | | | | | | * * * * * * *