MIZORAM PUBLIC SERVICE COMMISSION

Competitive Examinations for Recruitment to the post of Inspector of Factories under Labour, Employment, Skill Development & Entrepreneurship Department, Government of Mizoram, 2019

ELCTRICAL ENGINEERING PAPER - II

Time Allowed: 2 hours Full Marks: 200

All questions carry equal marks of 2 each.

Attempt all questions.

		Attempt all que	estion	<i>18</i> .		
1.	1. A good control system has all the following features except -					
	(a)	Good stability	(b)	Slow response		
	(c)	Good accuracy	(d)	Sufficient power handling capacity		
2.	The i	nitial response when the output is not equal to	inpu	t is called -		
	(a)	Transient response	(b)	Error response		
	(c)	Dynamic response	(d)	All of these		
3.	A con	ntrol system with excessive noise is likely to su	ıffer	from -		
	(a)	Saturation in amplifying stage	(b)	Loss of gain		
	(c)	Vibration	(d)	Oscillation		
4.	Trans	sfer function of a system is used to calculate wh	nich c	of the following?		
	(a)	The order of the system	(b)	The time constant		
	(c)	The output for any given input	(d)	The steady state gain		
5.	The	position and velocity errors of a type-2 system	n are	-		
	(a)	Constant, constant	(b)	Constant, infinity		
	(c)	Zero, constant	(d)	Zero, zero		
6.	Phase	e margin of a system is used to specify which o	fthe	following?		
	(a)	Frequency response	(b)	Absolute stability		
	(c)	Relative stability	(d)	Time response		
7.	If the	gain of the critical damped system is increase	d it v	vill behaves as -		
	(a)	oscillatory	(b)	critically damped		
	(c)	over damped	(d)	under damped		
8.	Gain	margin is the factor by which the gain of the s	ysten	n is increased to make it -		
	(a)	damped	(b)	oscillatory		
	(c)	stable	(d)	unstable		
9.	For re	oot loci which of the following are starting poi	nts?			
	(a)	open loop zeros	(b)	closed loop zeros		
	(c)	closed loop poles	(d)	open loop poles		
10.	Nyqu	uist criterion is used to find which of the follow	ing?			
	(a)	absolute stability	(b)	relative stability		
	(c)	both (a) & (b)	(d)	none of these		

	alid for -		
(a) minimum pha	ase network	(b)	all phase network
(c) non-minimum	n phase network	(d)	none of the above
12. The transfer function	on is $\frac{1+0.5S}{1+S}$. It represents a	-	
(a) lead network	-	(b)	lag network
(c) lag-lead netw	/ork	(d)	proportional network
13. A phase lag compen	nsation will -		
(a) improve relati	ive stability	(b)	increase the speed of response
(c) increase band	lwidth	(d)	increase overshoot
14. The phase angle for	r the transfer function $G(S) =$	$=\frac{1}{(1+ST)^2}$	$\frac{1}{2}$ at corner frequency is -
(a) -45°		(b)	-900
(c) -135°		(d)	-270^{0}
15. Signal flow graph i	s used to find -		
(a) stability of the	e system	(b)	controllability of the system
(c) transfer funct	cion of the system	(d)	poles of the system
16. Nichol's chart is us	eful for detailed study and ana	alysis of	?-
(a) closed loop fa	requency response	(b)	open loop frequency response
	d open loop frequency respons		
17. What is the steady s ramp input?	state error for a unity feedback	control	system having $G(S) = \frac{1}{S(S+1)}$ due to unit
		(b)	0.5
(a) 1		(b)	
(a) 1 (c) 0.25	16 1 4 4 4 1 4	(d)	$\sqrt{0.5}$
(a) 1(c) 0.2518. The instrument use	ed for plotting the root locus is	(d) called	$\sqrt{0.5}$
(a) 1(c) 0.2518. The instrument use(a) Slide rule	ed for plotting the root locus is	(d) called (b)	$\sqrt{0.5}$ Spirule
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 		(d) called (b) (d)	$\sqrt{0.5}$ Spirule Selsyn
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the formula in the content of the c	ollowing techniques is utilized	(d) called (b) (d)	$\sqrt{0.5}$ Spirule
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina 	ollowing techniques is utilized ary axis?	(d) called (b) (d) to deter	$\sqrt{0.5}$. Spirule Selsyn mine the actual point at which the root locus
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the formula in the content of the c	ollowing techniques is utilized ary axis?	(d) called (b) (d) to deter (b)	$\sqrt{0.5}$ Spirule Selsyn
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technology (b) Nichology 	ollowing techniques is utilized ary axis? nique prion	(d) called (b) (d) to deter (b) (d)	$\sqrt{0.5}$ Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technology (b) Nichology 	ollowing techniques is utilized ary axis? nique prion	(d) called (b) (d) to deter (b) (d)	$\sqrt{0.5}$ Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist techn (c) Nichol's crite 20. The polar plot of a feater 	ollowing techniques is utilized ary axis? nique prion	(d) called (b) (d) to deter (b) (d) gh the c (b)	$\sqrt{0.5}$ Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is -
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technic (b) Nichol's crite 20. The polar plot of a result of a result	ollowing techniques is utilized ary axis? nique erion transfer function passes throu	(d) called (b) (d) to deter (b) (d) gh the c (b) (d)	Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is 1 dB infinity
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technic (b) Nichol's crite 20. The polar plot of a result of a result	ollowing techniques is utilized ary axis? nique prion	(d) called (b) (d) to deter (b) (d) ugh the co (b) (d) n margin	Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is 1 dB infinity
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the forcrosses the imagina (a) Nyquist techn (c) Nichol's crite 20. The polar plot of a region of the local plot (a) zero (b) 1 dB 21. If the gain of the local plot 	ollowing techniques is utilized ary axis? nique erion transfer function passes throu	(d) called (b) (d) to deter (b) (d) gh the c (b) (d) margin (b)	$\sqrt{0.5}$ Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is - - 1 dB infinity of the system is -
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technic (b) Nichol's crite 20. The polar plot of a result of a result	ollowing techniques is utilized ary axis? nique erion transfer function passes throu	(d) called (b) (d) to deter (b) (d) gh the c (b) (d) margin (b) (d)	Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is 1 dB infinity of the system is - doubled one fourth of original value
 (a) 1 (c) 0.25 18. The instrument use (a) Slide rule (c) Synchro 19. Which one of the focrosses the imagina (a) Nyquist technic (b) Nichol's crite 20. The polar plot of a result of a result	ollowing techniques is utilized ary axis? nique erion transfer function passes throu op system is doubled, the gain	(d) called (b) (d) to deter (b) (d) gh the c (b) (d) margin (b) (d) rmined	Spirule Selsyn mine the actual point at which the root locus Routh-Hurwitz criterion Bode plot critical point (-1, 0). Gain margin is 1 dB infinity of the system is - doubled one fourth of original value

23.	Consider the loop transfer function $G(S)H(S) =$	K	$\frac{C(S+6)}{C(S+6)}$. In the root-locus diagram, the
	centroid will be located at -	(S +	-3)(S+5)
	(a) -4	(b)	- 1
	(c) -2		- 3
24.	Consider the following equation $2S^4 + S^3 + 3S^{2+}$	` /	
	have in the right half of 'S' plane?		
	(a) one	()	two
	(c) three	` /	four
25.	If the gain margin of a certain feedback system is negative real axis at the point -	give	n as 20 dB, the Nyquist plot will cross the
	(a) $S = -0.05$	(b)	S = -0.2
	(c) $S = -0.1$	(d)	S = -0.01
26.	Derivative feedback control -		
	(a) increase feedback time	(b)	increase overshoot
	(c) decrease steady state error	(d)	does not affect the steady state error
27.	When the time period of observation is large, the t	ype o	of the error is -
	(a) Transient error	(b)	Steady state error
	(c) Half power error	(d)	Position error constant
28.	The maximum overshoot of a second order system	n can	be increased by -
	(a) decreasing damping frequency		increasing natural frequency
	(c) increasing damping factor	(d)	all of these
29.	The Root-locus are the plots of the variations of the	ne po	les of the closed loop system function with
	changes in -	•	
	(a) open loop gain	(b)	open loop poles
	(c) closed loop zeros	(d)	none of these
30.	Type 0 system has -		
	(a) high gain constant	(b)	small steady state error
	(c) either (a) or (b)	(d)	both (a) & (b)
31.	The eigen values of a linear system are the location	ns of -	
	(a) finite poles	(b)	poles of the system
	(c) zeros of the system	(d)	none of these
32.	In control systems stepper motors can be used for	-	
	(a) tape drives	(b)	capstan drives
	(c) computers	(d)	none of these
33.	A closed loop system is distinguished from open lo	op sy	stem by which of the following?
	(a) Servomechanism		Feedback
	(c) Output pattern	(d)	Input pattern
34.	The voltage build up process of a d.c. generator is	` /	• •
,	(a) difficult		delayed
	(c) cumulative		infinite

35.	The induced EMF in the armature conductors of a d.c. motor is -				
	(a)	sinusoidal	(b)	trapezoidal	
	(c)	rectangular	(d)	alternating	
36.	In an	ideal transformer -			
	(a)	winding have no resistance	(b)	core has no losses	
	(c)	core has infinite permeability	(d)	all of these	
37.	If the	e pole flux of a d.c. motor approaches zero, its	spee	ed will -	
		approaches zero	•		
	(b)	approaches infinity			
	(c)	no change due to corresponding change in ba	ck er	mf	
	(d)	approaches a stable value somewhere betwee	n zer	o and infinity	
38.	The	nain purpose of using core in transformer is to) –		
	(a)	decrease iron losses			
	(b)	prevent eddy current loss			
	(c)	eliminate magnetic hysteresis			
	(d)	decrease reluctance of the common magnetic	circu	uit	
39.	Trans	sformer cores are laminated in order to -			
	(a)	simplify its construction	(b)	minimize eddy current loss	
	(c)	reduce cost	(d)	reduce hysteresis loss	
40.	In pe	rforming the short circuit test of a transformer	-		
	-	high voltage side is usually short circuited		low voltage side is usually short circuited	
	(c)	any side is short circuited with preference	(d)	none of these	
41.	No lo	oad test on a transformer is carried out to dete	rmin	e -	
	(a)	copper loss	(b)	magnetizing current	
	` '	magnetizing current and no load loss	` ′	efficiency of the transformer	
42.	The e	effect of increasing the length of air-gap in an i	nduc	tion motor will be to increase the -	
		power factor		speed	
		magnetizing current	(d)	air-gap flux	
43.	The r	power factor of a squirrel-cage induction motor	or is -		
	-	low at light loads only		low at heavy loads only	
	(c)	low at light and heavy loads both	` ′	low at rated load only	
44.	A 6-r	pole, 50 Hz, 3-phase induction motor has a ful	ll loa	d speed of 950 rpm. At half-load, its speed	
	-	d be -		1 1	
	(a)	475 rpm	(b)	500 rpm	
	(c)	975 rpm	(d)	1000 rpm	
45.	The f	fractional slip of an induction motor is the ratio) -		
	(a)	rotor Cu loss/rotor input	(b)	stator Cu loss/stator input	
	(c)	rotor Cu loss/rotor output	(d)	rotor Cu loss/stator Cu loss	
46.	The	efficiency and p.f. of a SCIM increases in prop	ortio	on to its -	
	(a)	speed	(b)	mechanical torque	
	(c)	voltage	(d)	rotor torque	

47.	For proper parallel operations, a.c. polyphase alter	rnato	rs must have the same -
	(a) speed	(b)	voltage rating
	(c) kVA rating	(d)	excitation
48.	A two-winding transformer is used as an auto-tran compared to the two winding transformer will be -	sforn	ner. The kVA rating of the auto transformer
	(a) 3 times	(b)	2 times
	(c) 1.5 times	(d)	same
49.	The synchronous reactance is the -		
	(a) Reactance due to armature reaction of the ma	achin	e
	(b) Reactance due to leakage flux		
	(c) Combined reactance due to leakage flux and	arma	ature reaction
	(d) Reactance either due to armature reaction or	leaka	age flux
50.	If the applied voltage to a dc machine is 230 V, then	n the l	back emf for maximum power delivered is-
	(a) 115 V	(b)	200 V
	(c) 230 V	(d)	460 V
51.	If the speed of a dc motor increases with load torc	լue, tl	nen it is a -
	(a) series motor	(b)	permanent magnet motor
	(c) differentially compound motor	(d)	cumulatively compound motor
52.	The rotor power output of a 3-phase induction mo 4% will be -	tor is	15 kW. The rotor copper losses at a slip of
	(a) 600 W	(b)	625 W
	(c) 650 W	(d)	700 W
53.	Stepper motor are mostly used for -		
	(a) high power requirements	(b)	control system applications
	(c) very high speed of operation	(d)	very low speed of operation
54.	An induction motor having 8 poles runs at 727.5 rprotor will have a frequency of -	m. If t	the supply frequency is 50 Hz, the emf in the
	(a) 1.5 Hz	(b)	48.5 Hz
	(c) 51.5 Hz	(d)	75 Hz
55.	The field coils of D.C. generators are usually made	e of -	
	(a) mica	(b)	copper
	(c) cast iron	(d)	carbon
56.	In lap winding, the number of brushes is always -		
	(a) double the number of poles	(b)	same as the number of poles
	(c) half the number of poles	(d)	two
57.	Brushes of D.C machines are made of -		
	(a) carbon	(b)	soft copper
	(c) hard copper	(d)	all of these
58.	The purpose of providing dummy coils in a genera	tor is	-
	(a) to enhance flux density		to amplify voltage
	(c) to provide mechanical balance for the rotor	(d)	to reduce eddy currents

59.	The polarity of a D.C. generator can be	reversed by -	
	(a) reversing the field current		
	(b) increasing field current		
	(c) reversing field current as well as dir	rection of rotati	on
	(d) none of these		
60.	The number of brushes in a commutator	depends on -	
	(a) speed of armature	(b)	type of winding
	(c) voltage	(d)	amount of current to be collected
61.	In a D.C. generator the critical resistance	e refers to the re	esistance of -
	(a) brushes	(b)	field
	(c) armature	(d)	load
62.	If a D.C. motor is to be selected for conv	eyors, which m	notor would be preferred?
	(a) series motor	(b)	shunt motor
	(c) differentially compound motor	(d)	cumulative compound motor
63.	The speed of a D.C. series motor is -		
	(a) proportional to the armature curren	ıt	
	(b) proportional to the square of the ar	mature current	
	(c) proportional to field current		
	(d) inversely proportional to the armatu	ire current	
64.	Which of the following motors one will c	hoose to drive t	he rotary compressor?
	(a) D.C shunt motor	(b)	D.C series motor
	(c) Universal motor	(d)	Synchronous motor
65.	The term 'cogging' is associated with -		
	(a) three phase transformer	(b)	compound generators
	(c) D.C. series motor	(d)	induction motors
66.	The condition for maximum efficiency for	or a D.C. genera	tor is -
	(a) eddy current loss = stray loss	(b)	hysteresis losses = eddy current losses
	(c) copper $loss = 0$	(d)	variable losses = constant losses
67.	Power transformers are designed to have	maximum effic	iency at -
	(a) nearly full load	(b)	70% full load
	(c) 50% full load	(d)	no load
68.	Natural oil cooling is used for transformed	er upto a rating	of-
	(a) 3000 kVA	(b)	1000 kVA
	(c) 500 kVA	(d)	250 kVA
69.	A Buchholz relay can be installed on -		
	(a) auto-transformer	(b)	air-cooled transformer
	(c) welding transformer	(d)	oil cooled transformer
70.	The value of flux involved in the e.m.f. ed	quation of a tran	sformer is -
	(a) average value	(b)	r.m.s. value
	(c) maximum value	(d)	instantaneous value

71.	Which type of winding is used in 3-phase shell-type transformer?			
	(a)	circular type	(b)	sandwich type
	(c)	cylindrical type	(d)	rectangular type
72.	The 'c	crawling' in an induction motor is caused by-		
	(a)	high loads	(b)	low voltage supply
	(c)	improper design of machine	(d)	harmonics developed in the motor
73.	In the	circle diagram for induction motor, the diame	eter o	of the circle represents -
	(a)	slip	(b)	rotor current
	(c)	running torque	(d)	line voltage
74.	The sl	kin effect does not depends on -		
	(a)	nature of material	(b)	size of wire
	(c)	supply frequency	(d)	temperature
75.	ACSF	R conductor have the central core made of -		
	(a)	copper	(b)	steel
	(c)	aluminium	(d)	cadmium
76.	Ferra	nti effect on long overhead line is experience	d wh	en it is -
	(a)	lightly loaded	(b)	on full load at unity pf
	(c)	on full load at 0.8 pf	(d)	on full load at zero pf
77.	Byusi	ing guard ring in a transmission line, its string of	effici	ency-
	(a)	increase	(b)	decrease
	(c)	remain constant	(d)	none
78.	Major	r share of power produced in India is through		
		thermal plants	` ′	hydroelectric plants
		nuclear plants	(d)	diesel plant
79.		nost common type of unsymmetrical fault is -		
	` '	single line to ground		double line to ground
	. ,	line to line	` ´	three phase
80.	_	ositive, negative and zero sequence impedar condition always follow the relation -	nces	of a solidly grounded system under steady
	(a)	$Z_1 > Z_2 > Z_0$		$Z_1 < Z_2 < Z_0$
	(c)	$Z_0 < Z_1 < Z_2$	(d)	$Z_0 = Z_1 = Z_2$
81.	-	dro power stations, what is an enlarged bod ating reservoir, called?	ly of	water just above the intake and used as a
	(a)	Spillways	(b)	Forebay
	(c)	Reservoir	(d)	Penstock
82.	How 1	many relays are used to detect inter phase fau	lt of a	a three line system?
	(a)	One	(b)	Two
	(c)	Three	(d)	Six
83.		aily energy produced in a thermal power stat aximum demand of the station?	ion i	s 720 MWh at a load factor of 0.6. What is
	(a)	50 MW	(b)	30 MW

(d) 720 MW

(c) 72 MW

84.	In a .	3-phase, 5 kV, 5 MVA system, what is the ba	ise im	ipedance?
	(a)	5 ohms	(b)	50 ohms
	(c)	500 ohms	(d)	0.5 ohms
85.		mum efficiency of modern coal-fired steam-r (a low value), mainly because of -	aising	g thermal power plants is restricted to about
	(a)	low alternator efficiency		
		high energy loss in boilers		
	` '	low steam turbine mechanical efficiency		
	(d)	high energy loss from turbine exhaust to cond	dense	r
86.	The ı	use of high speed CB -		
	(a)	reduces the short circuit current	(b)	improves system stability
	(c)	decreases system stability	(d)	increases the shorter circuit current
87.	Equa	l area criteria given the information respondin	g -	
	(a)	stability region	(b)	absolute stability
	(c)	relative stability	(d)	swing curves
88.	Equa	l area criteria is applicable for -		
	(a)	single machine system	(b)	two-machine system
	(c)	multi-machine system	(d)	any one of the above
89.		Y _{bus} matrix of a 100 bus interconnected system in the system must be -	is 90°	% sparse. Hence the number of transmission
	(a)	450	(b)	500
	(c)	900	(d)	1000
90.	_	nerated station has a maximum demand of 30 r of 50%. The reserve capacity of the plant is		V, a load factor of 60% and a plant capacity
	(a)	5 MW	(b)	4 MW
	(c)	6 MW	(d)	10 MW
91.		e HVDC system, the ac harmonics which go erters are -	ets ef	fectively eliminated with 12 pulse bridge
	` ′	triplen harmonics	()	triplen and 5 th harmonics
	(c)	triplen, 5 th and 7 th harmonics	(d)	5 th and 7 th harmonics
92.	If the	excitation of the synchronous generators fail	ls, it a	icts as a -
	(a)	synchronous motor		synchronous generator
	(c)	induction motor	(d)	induction generator
93.	If the	e inertia constant H of a machine of 200 MV. be -	A is 2	2 p.u. its value corresponding to 400 MVA
	(a)	4.0 p.u.	(b)	2.0 p.u.
	(c)	1.0 p.u.	(d)	0.5 p.u
94.	A lig	htning arrestor connected between the line an	ıd ear	th in a power system to -
	(a)	protects the terminal equipment against travel	llings	surges
	(b)	protects the transmission line against lightning	g stro	ke
(c) suppresses high frequency oscillations in the line				

(d) reflects back the travelling wave approaching it

95.	The insulation of modern EHV lines is designed based on -			
	(a)	the lightning voltage	(b)	corona
	(c)	radio interference	(d)	switching voltage
96.	In a p	power station, the cost of generation of power	redu	ces most effectively when -
	(a)	diversity factor alone increases		
	(b)	both diversity factor and load factor increase		
	(c)	load factor alone increases		
	(d)	both diversity factor and load factor decrease	2	
97.	The	relay which is most sensitive to power swings i	is -	
		Mho relay	(b)	Reactance relay
	(c)	Impedance relay	(d)	All are equally affected
98.	3. If the fault current is 2 kA, the relay setting is 50% and the C.T ratio is 400/5, then the plug setting multiplier of a relay will be -			
	(a)	5	(b)	7
	(c)	8	(d)	10
99.	A vo	Itage control bus is characterised by the specif	ied -	
	(a)	real and reactive powers	(b)	real power and voltage phase angle
	(c)	real power and voltage magnitude	(d)	reactive power and voltage magnitude
100.	Norn	nally Z _{bus} matrix is a -		
	(a)	Null matrix	(b)	Sparse matrix
	(c)	Full matrix	(d)	Unity matrix

* * * * * * *