MIZORAM PUBLIC SERVICE COMMISSION

Common Competitive Examination for Group 'B' Non-Gazetted (Technical)

JUNIOR ENGINEER (CONTRACT BASIS) (ELECTRICAL) UNDER POWER & ELECTRICITY DEPARTMENT,

GOVERNMENT OF MIZORAM, NOVEMBER-2024

PAPER-IV (MECHANICAL ENGINEERING)

Time Allo	wed: 2 hours		FM: 200
	All questions carry equa	l mai	rk of 2 each.
	Attempt all qu		·
1. The	two important forces for a floating body are -		
(a)	Buoyancy, gravity	(b)	Buoyancy, pressure
(c)	Buoyancy, initial	(d)	Inertial, gravity
2. Ven	turimeter is used to measure flow of fluids in p	ipes v	when pipe is -
	Horizontal	_	Vertical, flow downwards
(c)	Vertical, flow upwards	(d)	In any position
	most economical section of a rectangular char th is equal to -	mel f	or maximum discharge is obtained when its
(a)	Half the breadth	(b)	Twice the breadth
(c)	Same as the breadth	(d)	3/4 th the breadth
4. Wat	er hammer in pipes occurs due to -		
(a)	Someone hitting the pipe with a hammer		
(b)	Sudden change in the velocity of any flowing	fluid	•
(c)	Heavy pressurisation of pipe		
(d)	Obstruction in pipe		
5. Whi	ch among the following control the flow rate?		
(a)	Valve	(b)	Pump
(c)	Head	(d)	Tank pipe
6. Rey	nold's number is the ratio of inertia force to -		
(a)	Pressure force	(b)	Elastic force
(c)	Gravity force	(d)	Viscous force
	is the gauge pressure within a spherical droplet I and of same size will be -	, then	gauge pressure within a bubble of the same
(a)	P/4	(b)	P/2
(c)	P	(d)	2P

8.		n a body, floating in a liquid, is given a small a t known as -	ngula	ar displacement, it starts oscillating about a
	(a)	Centre of pressure	(b)	Centre of gravity
	(c)	Centre of buoyancy	(d)	Metacentre
9.	Powe	er transmitted through a pipe is maximum whe	n the	loss of head due to friction is -
	(a)	One-half of the total head supplied	(b)	One-third of the total head supplied
	(c)	One-fourth of the total head supplied	(d)	Equal to the total head supplied
10.	Norn	nal depth in open channel flow is the depth of i	flow	corresponding to -
	(a)	Unsteady flow	(b)	Uniform flow
	(c)	Laminar flow	(d)	Steady flow
11.	The e	efficiency of a centrifugal pump is maximum w	hen i	ts blades are -
	(a)	Straight	(b)	Bent forward
	(c)	Bent backward	(d)	Bent forward first and then backward
12.	Axia	l flow pump is started with its delivery valve -		
	(a)	Kept fully closed	(b)	Kept fully open
	(c)	Irrespective of any position	(d)	Kept 50% open
13.	A tur	bine pump is basically a centrifugal pump equi	pped	additionally with -
	(a)	Adjustable blades	(b)	Backward curved blades
	(c)	Vaned diffusion casing	(d)	Inlet guide blades
14.	To av	oid cavitation in centrifugal pumps -		
	(a)	Suction pressure should be low	(b)	Delivery pressure should be low
	(c)	Suction pressure should be high	(d)	Delivery pressure should be high
15.	Hydr	aulic ram is a pump which works -		
	(a)	On the principle of centrifugal action	(b)	On the principle of reciprocating action
	(c)	On the principle of water hammer	(d)	On the principle of reaction
16.	Hydr	aulic turbines are classified based on		_•
	(a)	Energy available at inlet of turbine	(b)	Direction of flow through vanes
	(c)	Head at inlet of turbine	(d)	Energyavailable, Directionofflow, Headatin let.
17.	Pelto	n wheel are used for minimum of following hea	ıds-	
	(a)	20 meter	(b)	100 meter
	(c)	125 meter	(d)	180 meter and above
18.	Reac	tion turbines are used for -		
	(a)	Low head	(b)	High head
	(c)	High head and low discharge	(d)	Low head and high discharge
19.	Franc	cis, Kaplan and Propeller turbines fall under th	e cat	egory of -
	(a)	Impulse turbines	(b)	Reaction turbines
	(c)	Axial flow turbines	(d)	Mixed flow turbines
20.	The n	nain function of nozzle is to		
	(a)	Varying temperatures	(b)	Pressure variations
	(0)	Load variations	(A)	Heat variations

21.	_	er common design practice, the three types of are -	f hydr	aulic turbines, in descending order of flow
	_	Pelton, Francis, Kaplan	(b)	Pelton, Kaplan, Francis
		Francis, Kaplan, Pelton	. ,	Kaplan, Francis, Pelton
22.		imatic and other power systems can support t	hree k	cinds of motion; they are -
		Linear, reciprocating, and random motion		Linear, flowing, and rotary motion
		Linear, zigzag, and spiral motion	(d)	Linear, reciprocating, and rotary motion
23.	Inab	nydraulic crane is the componen	nt mai	nly responsible for lifting.
		Boom		Counter-weights
	(c)	Jib	(d)	Rotex Gear
24.	A Fra	ancis turbine is used when the available head	of wa	ter is -
	(a)	25 m to 250 m	(b)	0 to 25 m
	(c)	250 m to 300 m	(d)	Above 300 m
25.	Whic	ch of the following items is not a path function	?	
	(a)	Heat	(b)	Work
	(c)	Kinetic energy	(d)	Thermal conductivity
26.	A clo	osed system is one in which -		
	(a)	Mass does not cross boundaries of the syste	m, the	ough energy may do so
	(b)	Mass crosses the boundary but not the energ	gy	
	(c)	Neither mass nor energy crosses the boundar	ries o	f the system
	(d)	Both mass and energy cross the boundaries	of the	system
27.	Ifag	as vapour is allowed to expand through a very	minu	te aperture, then such a process is known as-
	(a)	Free expansion	(b)	Hyperbolic expansion
	(c)	Adiabatic expansion	(d)	Throttling
28.	Whe	n a gas flows through a very long pipe of unife	orm cı	ross section, the flow is approximately -
	(a)	Isentropic	(b)	Isobaric
	(c)	Isothermal	(d)	Adiabatic
29.	The e	entropy may be expressed as a function of -		
	(a)	Pressure and temperature	(b)	Temperature and volume
	(c)	Heat and work	(d)	All of these
30.	Whic	h of the following has the highest calorific value	ıe?	
	(a)	Anthracite coal	(b)	Bituminous coal
	(c)	Peat	(d)	Lignite
31.	Energ	gy can neither be created nor destroyed but can be	e conv	rerted from one form to other is inferred from-
	` '	Zeroth low of thermodynamic	(b)	Basic law of thermodynamics
	(c)	First law of thermodynamics	(d)	Second law to thermodynamics
32.	The f	uel mostly used in steam boilers is -		
	(a)	Non-coking bituminous coal	(b)	Brown coal
	(c)	Peat	(d)	Coking bituminous coal

33.	An o	pen cycle gas turbine works on -		
	(a)	Otto cycle	(b)	Carnot cycle
	(c)	Stirling cycle	(d)	Joule's cycle
34.	For a	given set of operating pressure limits of a Rai	nkine	cycle, the highest efficiency occurs for -
	(a)	Saturated cycle	(b)	Superheated cycle
	(c)	Reheat cycle	(d)	Regenerative cycle
35.	The	amount of heat generated per kg of fuel is kno	wn a	s -
	(a)	Calorific value	(b)	Heat energy
	(c)	Lower calorific value	(d)	Higher calorific value
36.	The corre	door of a running refrigerator inside a room weet?	as lef	t open. Which of the following statements is
	(a)	The room will be cooled to the temperature is	nside	the refrigerator
	(b)	The room will be cooled very slightly		
	(c)	The room will be gradually warmed up		
	(d)	The temperature of the air in room will remai	ned u	naffected
37.	Tripl	le point of a pure substance is a point at which	-	
		Liquid and vapour exist together		Solid and liquid exist together
	(c)	Solid and vapor exist together	(d)	Solid, liquid and vapour phases exist together
38.	Cycl	e used in thermal power plants is -		
	(a)	Carnot	(b)	Reversed carnot
	(c)	Rankine	(d)	Brayton
39.	A ste	eam nozzle converts -		
	(a)	Kinetic energy into heat	(b)	Heat energy into potential energy
	(c)	Potential energy into heat	(d)	Heat energy into kinetic energy
40.	The	volume of air required for consuming 1 litre of	ffuel	by a four stroke engine is
		5-6m ³		9-10m ³
	(c)	2.5m ³	(d)	1.0m ³
41.	Whic	ch of the following is the anti-knock for compre	ssion	ignition engines?
		Amyl nitrate		Hexadecane
	(c)	Naphthene	(d)	Tetra ethyl lead
42.	A pe	rpetual motion machine is -		
	_	A thermodynamic machine		
	(b)	a non-thermodynamic machine		
	(c)	a hypothetical machine		
	(d)	a hypothetical machine whose operation wou	ld vic	plate the laws of thermodynamics
43.	Com	pression ratio of I.C. engines is -		
	(a)	The ratio of volumes of air in cylinder before	comp	oression stroke and after compression stroke
	(b)	Volume displaced by piston per stroke and cl		
	(c)	Ratio of pressure after compression and before	re co	mpression
	(d)	Swept volume/cylinder volume		•

44.	The	reason for supercharging in any engine is to -		
	(a)	Increase efficiency	(b)	Increase power
	(c)	Increase power	(d)	Reduce weight and bulk for a given output
45.	The	cetane $(C_{16}H_{34})$ which is a straight chain paraff	in, is	s assigned a cetane number of -
	(a)	0	(b)	50
	(c)	100	(d)	120
46.	The	most effective air cleaner in the case of diesel e	ngin	es is -
	(a)	Whirl type	(b)	Oil bath type
	(c)	Wet type	(d)	Dry type
47.	Whic	ch of the following does not relate to a compress	sion	ignition engine?
	(a)	Fuel pump	(b)	Fuel injector
	(c)	Governor	(d)	Carburettor
48.	The i	nlet valve of a four stroke cycle internal combi	ıstio	n engine remains open for -
	(a)	130°	(b)	180°
	(c)	230°	(d)	270°
49.	If the	intake air temperature of I.C. engine increases	s, its	efficiency will -
	(a)	Increase	(b)	Decrease
	(c)	Remain same	(d)	Unpredictable
50.	Whic	ch of the following is not an internal combustion	engi	ine?
	(a)	2-stroke petrol engine	(b)	4-stroke petrol engine
	(c)	Diesel engine	(d)	Steam turbine
51.	Asa	result of detonation in an I.C. engine, following	g par	ameter attains very high value -
	(a)	Rate of rise of pressure	(b)	Rate of rise of temperature
	(c)	Peak temperature	(d)	Peak pressure
52.	A 15	0 cc engine has following parameter as 150 cc	: -	
	(a)	Fuel tank capacity	(b)	Swept volume
	(c)	Cylinder volume	(d)	Clearance volume
53.	For n	naximum power generation, the air fuel ratio fo	or a p	etrol engine for vehicles, is of the order of -
	(a)	9:1	(b)	12:1
	(c)	15:1	(d)	18:1
54.	The t	endency of a diesel engine to knock increases,	, if -	
	(a)	Engine speed is increased	(b)	Engine Horse Power is increased
	(c)	Octane number of fuel is increased	(d)	Compression ratio is increased
55.	If pet	rol is used in a diesel engine, then -		
	(a)	Higher knocking will occur	(b)	Efficiency will be low
	(c)	Low power will be produced	(d)	Black smoke will be produced
56.	Whic	h of the following is a classification of automo	biles	based on Load?
	(a)	Heavy transport vehicle (HTV)	(b)	Sedan Hatchback car
	(c)	Four wheeler vehicle	(d)	Front-wheel drive

57.	Whic	h of the following provides passages for the flo	ow of	fcooling water?
		Crankcase		Cylinder block
	(c)	Piston	(d)	Cylinder head
58.	A spa	ark plug gap is generally kept from -		
	_	0 to 0.3 mm	(b)	0.3 to 0.7 mm
	(c)	0.5 to 0.8 mm	(d)	0.6 to 1.0 mm
59.	What	is the function of the alternator?		
		Voltage Regulator	(b)	Recharging the battery
	` '	Auto-ignition	(d)	Mixture of air and fuel
60.	Whic	th of the following is not a part of the transmiss	ion s	ystem?
		Clutch		Wheels
	` ′	Gear box	(d)	Axles
61.	• •	ch of the following is a classification of IC Engi	ne?	
01.		Four-stroke engines		S.I Engines
	` ′	Otto cycle engine	• ,	Carnot cycle engine
62	` ′	ch of the following is necessary for the descript	ion o	fan automobile?
02.		Make		Model
	` ′	Capacity	` '	All of above
63	` `	function of anti-lock brake system (ABS) in an	• •	
05.		Reduces the stopping distance		
	(/	Minimizes the brake fade		
	` '	Maintains directional control during braking b	ov pre	eventing the wheels from locking
		Prevents nose dives during braking and there		
64	` '	negative plates of a lead acid battery has -	7 1	
04.		Lead peroxide (PbO ₂)	(b)	Spongy lead (Pb)
		Lead sulphate (PbSO ₄)		Sulphuric acid (H ₂ SO ₄)
<i>(</i>		seat belt tensioners are built in the -	(-)	2
05.		Front seats	(h)	Shoulder anchors
	` ′	Seat belt retractors	` ′	Seat belt buckles
	` ′			-
00.		power source for a brake booster in an autom	OULC	
	` '	Exhaust manifold pressure Electricity		
	` '	The pressure difference between the atmos	nheri	c pressure and the vacuum pressure in the
	(0)	intake manifold	piiori	o problem of the transfer problem of the
	(d)	Hydraulic pump		
67.	The	oil pump is driven by the -		
071		Camshaft	(b)	Alternator shaft
		Crankshaft via drive belt	(d)	Crankshaft directly
68	` '	basic part of the engine, to which the other en	gine	parts are attached or assembled is the -
		Cylinder head		Crankshaft
	` '	Cylinder block	` '	Oil pan

69.		Which of the following is defined as an upraised part on the hood which directs the airflow into the engine compartment?				
	_	•	(b)	Wings		
		Spoiler Hood scoop		Hotpipe		
70	` '	•	` '	• •		
70.		ch of the following is a cylinder head type of a		•		
		C head	` '	X head		
	` '	F head	` ,	U head		
71.		temperature of the piston will be more at				
		the piston rings	` '	the crown of the piston		
	, ,	the piston walls	, ,	the skirt of the piston		
72.		ch of the following is not a part of the transmiss				
	` '	Clutch	` '	Wheels		
	(c)	Gear box	(d)	Axles		
73.		ch of the following provides passages for the fl		_		
	` '	Crankcase	` ,	Piston		
	(c)	Cylinder block	(d)	Cylinder head		
74.		operating pressure for refrigerating units using		•		
	` `	2 bar	` ′	8 bar		
	(c)	15 bar	(d)	30 bar		
75.	Duri	ng heating and dehumidification process, dry b	ulb te	emperature -		
	` ′	Increases	` '	Remains constant		
	(c)	Decreases	(d)	None of these		
76.		ronment friendly refrigerant R134a is used in nical formula is -	n the	new generation domestic refrigerators. Its		
	(a)	CH Cl F ₂	(b)	$C_2 Cl_2 F_3$		
	(c)	$C_2 H_2 F_4$	(d)	$C_2 Cl_2 F_4$		
77.	Then	noisture in a refrigerant is removed by -				
	(a)	Evaporator	(b)	Safety relieve valve		
	(c)	Dehumidifier	(d)	Driers		
78.	The o	domestic refrigerator uses following type of co	mpre	essor -		
	(a)	Centrifugal	(b)	Axial		
	(c)	Miniature sealed unit	(d)	Piston type reciprocating		
79.	Refri	geration in aeroplane usually employs the follo	wing	refrigerant -		
	(a)	CO ₂	(b)	Freon – 11		
	(c)	Freon – 22	(d)	Air		
80.	The r	ninimum temperature to which water can be c	ooled	l in a cooling tower is -		
	(a)	Dew point temperature of air	(b)	Wet bulb temperature of air		
	(c)	Dry bulb temperature of air	(d)	Ambient air temperature		
81.	In a r	efrigeration cycle, the flow of refrigerant is co	ntroll	ed by -		
	(a)	Evaporator	(b)	Compressor		
	(c)	Condenser	(a)	Expansion valve		

82.		A refrigeration cycle operates between condenser temperature of +27°C and evaporator temperature of -23°C. The Carnot coefficient of performance of cycle will be -		
	(a)	0.2	(b)	1.2
	(c)	5	(d)	6
83.	At lower temperatures and pressures, the latent heat of vaporisation of a refrigerant -			
	(a)	Decreases	(b)	Increases
	(c)	Remains same	(d)	Depends on other factors
84.	Com	pressor used in Window Air Conditioner is -		
	(a)	Rotary	(b)	Reciprocating compressor
	(c)	Sealed compressor	(d)	Open type compressor
85.	Form	nation of frost on evaporator in refrigerator -		
	(a)	Results in loss of heat due to poor heat transfer	(b)	Increases heat transfer rate
	(c)	Is immaterial	(d)	Decreases compressor power
86.	The	nost suitable refrigerant for a commercial ice p	olant	is-
	(a)	Brine	(b)	NH ₃
	(c)	Freon	(d)	Air
87.	The	comfort conditions in air conditioning system a	ire de	efined by -
	(a)	22°C dry bulb temperature (DBT) and 60% re	elativ	e humidity (RH)
	(b)	25°C DBT and 100% RH		
	(c)	20°C DBT and 75% RH		
	(d)	25°C DBT and 40% RH		
88.	Air re	efrigeration cycle is used in aeroplanes becaus	e of-	-
	(a)	High heat transfer rate of air		
	(b)	Higher Coefficient of Performance (COP)		
	(c)	Lower temperature attainable		
	(d)	Lower weight of machine per ton of refrigerat	ion	
89.	Cool	ing towers are installed where -		
	(a)	Water is available in plenty	(b)	Water is scarce
	(c)	For very big plants	(d)	For very small plants
90.		ua ammonia and Lithium bromide water absor	rptio	n refrigeration systems, the refrigerants are
	-	ctively -	41.5	
	` '	Water and water	(b)	
	` '	Ammonia and water	(a)	Water and lithium bromide
91.		required for actual machining is called as	<i>a</i> :	·
	` '	Service time		Set up time
	` .*	Machining time	(d)	Tear down time
92.		the following which is not the type of budget.		
	• •	Material budget	(b)	
	(c)	Production budget	(d)	Sales budget
93.		uction budget is also called as		
		Machining budget	` '	Labour budget
	(c)	Manufacturing budget	(d)	Administrative budget

`` `**`**

94.	If we	lding length is 2 metre and welding speed is 1	0 met	tre/hour, then welding time is -
	(a)	0.2 hour	(b)	Labour charges
	(c)	5 hour	(d)	0.02 hour
95.		tting time is 0.5 hr, oxygen consumption is 5 mgen is	ı³/hr a	and cost of oxygen is Rs.30/m³, then cost of
	(a)	Rs. 50	(b)	Rs. 12
	(c)	Rs. 300	(d)	Rs. 75
96.		voltage is 22 volts, arc current is 200 Amp., V %, then power consumption is		ng time is 0.5 hr and transformer efficiency
	(a)	132 kwh	(b)	5.66 kwh
	(c)	3.66 kwh	(d)	3666.66 kwh
97.	Inter	est and depreciation of capital investment are	inclu	ded in
	(a)	Variable cost	(b)	Fixed cost
	(c)	Overhead cost	(d)	Prime cost
98.	Powe	er generation cost is the ratio of	_•	
	(a)	Total cost and power produced	(b)	Total cost and power consumption
	(c)	Variable cost and power produced	(d)	Fixed cost and power produced
99.		is the values of both semi-finished w	ork l	ying in production shop or store.
	(a)	Work in progress	(b)	Salvage value
	(c)	Book value	(d)	Net present value
100.	time.	is a graphical presentation of the rela	tions	hip between the costs and income at a given
	(a)	Profit – volume ratio	(b)	Break even chart
	(c)	Bar chart	(d)	Margin of safety

* * * * * *