MIZORAM PUBLIC SERVICE COMMISSION

Common Competitive Examination for Group 'B' Non-Gazetted (Technical)

JUNIOR ENGINEER (CIVIL) UNDER HORTICULTURE DEPARTMENT, GOVERNMENT OF MIZORAM, NOVEMBER-2024

PAPER-III (TECHNICAL SUBJECT)

PAPER-III (TECHNIC	لAL.	A SUBJECT)
Time Allowed: 2 hours		FM: 200
All questions carry equa Attempt all que		•
1. A good brick, when immersed in water bath for 24	l hou	rs, should not absorb more than -
(a) 20% of its dry weight	(b)	30% of its saturated weight
(c) 10% of its dry weight	(d)	20% of its saturated weight
2. As per I.S classification, the minimum compressiv	e stre	ngth of a first class brick should be -
(a) 75 kg/cm^2	(b)	100 kg/cm ²
(c) 125 kg/cm^2	(d)	150 kg/cm ²
3. Efflorescence of bricks is due to -		
(a) Excessive burning of bricks	(b)	High silt content in brick clay
(c) High porosity of bricks	(d)	Soluble salts present in parent clay
4. The most important purpose of frog in a brick is to) -	
(a) Emboss manufacturer's name	(b)	Reduce the weight of brick
(c) Form keyed joint between brick and mortar	(d)	Improve insulation by providing hollows
5. If 'P' is the standard consistency of cement, the amount time test on cement is -	ount o	f water used in conducting the initial setting
(a) 0.65P	(b)	0.85P
(c) 0.6P	(d)	0.8P
6. A cement of average composition requires about		of water by mass for chemical reaction.
(a) 35%	(b)	45%
(c) 15%	(d)	25%
7. Gypsum is used as an admixture in cement grouts i	or -	
(a) Accelerating the setting time	(b)	Retarding the setting time
(c) Increasing the plasticity	(d)	Reducing the grout shrinkage
8. A quick setting cement has an initial setting time of	'abou	t -
(a) 50 minutes	(b)	40 minutes
(c) 15 minutes	(d)	5 minutes
9. Chemical reaction of the cement when it is mix wit	h wa	ter is called as
(a) Setting time	(b)	Hydration of cement

(c) Water cement ratio

(d) Final setting time

10.	Air p	permeability method is used to determine -		
	(a)	Soundness of cement	(b)	Setting time
	(c)	Fineness of cement	(d)	Resistance of cement
11.	Forc	chemical resistance, proportion of which one of	the f	ollowing compounds in cement clinker shall
		increased?		
	• •	Tricalcium Silicate	` '	Dicalcium Silicate
	(c)	Tetracalcium Aluminate	(d)	Tetracalcium Aluminoferrite
12.	The	toughness of aggregate is tested by -		
		Impact test	` ′	Crushing strength test
	(c)	Abrasion test	(d)	Soundness test
13.	Wha	t is the range of fineness modulus of sand which	ch is l	least suitable for making a good concrete?
	(a)	3.5 - 4.5	` ′	2.9 - 3.2
	(c)	2.6 - 2.9	(d)	2.2 - 2.6
14.	On w	which one of the following factors, does the stre	ength	of concrete depend primarily?
	(a)	Quality of coarse aggregate	(b)	Quality of fine aggregate
	(c)	Fineness of cement	(d)	Water - cement ratio
15.	Aggı	regates occupy around percent o	f the	volume of concrete.
	(a)	70 - 80	(b)	60 - 70
	(c)	80 - 90	(d)	50 - 60
16.	The a	nggregate with rounded particles (river or seash	nore g	gravel) has minimum voids ranging from -
	(a)	42 - 43	(b)	31 - 34
	(c)	30 - 33	(d)	32 - 33
17.	Cem	ent mortar:		
	(a)	Sets slowly	(b)	Sets quickly
	(c)	Has high workability	(d)	Gains the strength at later stages.
18.	Seas	oning of timber is required to -		
	(a)	Soften the timber	(b)	Harden the timber
	(c)	Straighten the timber	(d)	Remove sap from the timber
19.	The	noisture content in a properly seasoned timber	r will	be in the range of -
	(a)	5% to 8 %	(b)	8 % to 10%
	(c)	10% to 12 %	(d)	12 % to 15 %
20.	What	t treatment is adopted for making timber fire -	resist	tant?
	(a)	ASCU treatment	(b)	Abel's process
	(c)	Creosoting	(d)	Tarring
21.	The r	nodulus of elasticity of timber is about -		
	(a)	$0.5 \text{ to } 1.0 \times 10^4 \text{ N/mm}^2$	(b)	$1.0 \text{ to } 1.5 \times 10^4 \text{N/mm}^2$
	(c)	$1.5 \text{ to } 2.0 \times 10^4 \text{ N/mm}^2$	(d)	$2.0 \text{ to } 2.5 \times 10^4 \text{ N/mm}^2$
22.	Timb	er can be made reasonably fire-resistant by -		
	(a)	Soaking it in ammonium sulphate		
	(b)	Coating with tar paint		
	(c)	Pumping creosote oil into timber under high p	ressu	nre

(d) Seasoning process

23.	The 1	plies in plywood are so placed that the grains	of ea	ch ply are -
	(a)	Parallel to each other		
	(b)	At right angles to one another		
	(c)	45° oblique to adjacent grain		
	(d)	Not constrained by any consideration		
24.	In co	ursed rubble masonry, the wall is built in cour	ses va	arying from -
	(a)	300 - 450 mm	(b)	350 - 450 mm
	(c)	400 - 500 mm	(d)	450 - 500 mm
25.	Ther	mal conductivity of plastics isc	ompai	red with wood.
	(a)	High	(b)	Relatively low
	(c)	Low	(d)	Relatively high
26.		naximum water content at which a reduction ne of a soil mass is called -	in wa	ater content will not cause a decrease in the
	(a)	Plasticity index	(b)	Consistency index
	(c)	Liquid limit	(d)	Shrinkage limit
27.		decrease in the volume of a soil mass, expres		
		, when water content is reduced from a given	_	
	` `	Linear shrinkage		Volumetric shrinkage
	(c)	Plastic limit	(d)	Shrinkage limit
28.	In Ov	ven - Drying Method, the water content of the	samp	ple is calculated as:
	(a)	$w = \frac{M2 - M3}{M3 - M1} \times 100$	(b)	$w = \frac{M2 - M3}{M2 - M1} \times 100$
	(c)	$w = \frac{M3 - M1}{M2 - M3} \times 100$	(d)	$w = \frac{M1 - M2}{M3 - M1} \times 100$
29.		ry sample has a void ratio of 0.50 in the dry rmined as 2.70. What is the shrinkage limit of		
	(a)	18.51 %	(b)	17.5 %
	(c)	19.51 %	(d)	16.51 %
30.	Sedir	nentation analysis is based on -		
	(a)	Atterberg's limit	(b)	Laboratory tests
	(c)	Stoke's Law	(d)	Hydrometer analysis
31.	Soil	classification is done on the basis of -		
	(a)	Plasticity of soil	(b)	Grain size distribution
	(c)	Soil type	(d)	Both (a) & (b)
32.		is the property of the soil which allow	s pas	sage of fluid through it.
	(a)	Capillarity	(b)	Permeability
	(c)	Laminar flow	(d)	Shrinkage
33.	The s	oil within a soil mass bounded by an isobar of	giver	n vertical pressure intensity is called:
	(a)	Isotropic	(b)	Contact pressure
	(c)	Pressure bulb	(d)	Pressure intensity

1

34.	Poiss	on's ratio for a saturated clay is -		
	(a)	0	(b)	0.25
	(c)	0.5	(d)	0.15
35.	Darc	y's law of linear dependency between velocity o	of flo	w 'v' and hydraulic gradient 'i' is valid only
	for -			
		Laminar flow	` '	Turbulent flow
	(c)	Fluid	(d)	Both (a) & (b)
36.	The s	shear test that is more suitable in the field is -		
	(a)	Direct shear	(b)	Triaxial shear
	(c)	Unconfined compression	(d)	Vane shear
37.	The s	strength envelope of a pure cohesive soil is -		
	(a)	Vertical	(b)	Horizontal
	(c)	Inclined	(d)	Curvilinear
38.	Unco	onfined compression test is generally performed	d on	-
	(a)	Sandy soils	(b)	Silty soils
	(c)	Intact saturated clay	(d)	Fissured clay
39.	The a	ingle of inclination of the Coulomb's failure en	velop	be with the horizontal is called -
		Angle of internal friction		Angle of repose
	(c)	Angle of friction	(d)	Frictional resistance
40.	The b	pasement walls are generally designed for -		
		Active pressure	(b)	Passive pressure
	• ,	At rest pressure	(d)	None of these
41.	Weet	holes are provided in the retaining walls for the	ne fo	llowing reason -
	-	To avoid friction behind the wall		To improve the appearance
	, -	To avoid cracks due to shrinkage	(d)	To provide drainage of backfill
42.	Grav	ity type retaining wall primarily mobilise active	e eari	th pressure by -
		The free deflection at the top		The free deflection at the base
	` '	Uniform translation	(d)	Sudden overturning
43.	The s	state of shear failure accompanying a minimum	eart	h pressure is called -
		At rest state		Active state
	` '	Passive state	(d)	None of these
44.	` ,	ssive case, the wall moves -		
•••	-	Towards the backfill	(b)	Away from backfill
	` ′	No movement at all	` '	Downwards
15	` ′	ch of the following will have a finite slope -	()	
45.		Embankment	(b)	Earth Dam
	` ′	Canals	` ,	All of these
15	` '		` /	
40.		ninimum depth for all foundations below the na		400 mm
		500 mm	(d)	550 mm
	(c)	600 mm	(u)	JJV IIIII

47.	The ultimate bearing capacity of cohesionless soil depends upon -				
	(a)	Width of footing	(b)	Depth of footing	
	(c)	Relative density	(d)	All of these	
48.	Well	foundations are commonly used as foundation	for tl	he following structures -	
		Water tanks		Bridges	
	(c)	Buildings	(d)	Reciprocating machines	
49.	As pe	er IS code, maximum permissible differential s	ettlei	ment on clayey soil is -	
	(a)	35	(b)	40	
	(c)	60	(d)	50	
50.	The f	Failure of a pile foundation is due to -			
	(a)	General shear	(b)	Local shear	
	(c)	Mixed shear	(d)	Punching shear	
51.		n specific information about the density of sn fall is taken as -	owfa	all is not available, the water equivalent of	
		50%	(b)	30%	
	(c)	10%	(d)	90%	
52.	Anis	onif is a line joining points having equal -			
		Rainfall	(b)	Sunshine	
	(c)	Wind velocity	(d)	Snowfall	
53.	As pe	er Indian standards the number of rain gauges th	nat sh	ould be installed in aplain area of 1000 km ²	
	(a)	1	(b)	2	
	(c)		(d)		
54	` ′	nstrument used to measure the wind velocity in	` `		
J4.		Current meter		Atmometer	
	• •	Pycnometer	` '	Anemometer	
55.	, ,	e following, identify the one which is different	` '		
		Rain		Drizzle	
	` '	Hail	` ′	Fog	
56.	` ′	standard Symon's type rain gauge has a collect	. ,	_	
		12.7 cm		10 cm	
	` ,	5.08 cm	• ′	25.4 cm	
57.	` '	securate method for calculating average rainfal	` ′		
		Arithmetic mean		Theissen polygon	
		Isohyetal		Both (a) & (b)	
58.	Direc	et runoff is made up of -	,		
		Overland flow only			
		Surface runoff, infiltration and evaporation			
	• •	Surface runoff only			
	(d)	Surface runoff, prompt interflow and channel	precij	pitation	

59.	When	n an accumulated mass of snow melts, the resu	lting	flow entering a stream is classified as -
		Direct runoff		Base flow
	(c)	Subsurface flow	(d)	Inter flow
60.	The s	surface runoff is due to -		
	(a)	Initial rain	(b)	Residual rain
	(c)	Residual rain in the net supply interval	(d)	All of these
61.	Hvdr	ograph is a graphical representation of -		
	•	Surface runoff	(b)	Groundwater flow
	• ,	Rainfall	(d)	None of these
62.	The ı	apper limit on the area of the basin for the applic	cabil	ity of unit hydrograph is generally taken as -
		100 km ²		2500 km ²
	` '	5000 km ²	(d)	10000 km ²
63.	The	concept of unit hydrograph was first introduce	d by	_
		Dalton		Sherman
	` '	Horton	(d)	Thiessen
64.	The t	ime required by rain water to reach the outlet o	of dra	ainage basin is generally called -
		Time of overland flow		Concentration time and overland flow
	, ,	Time of concentration	(d)	Duration of the rainfall
65.	` '	ntity of water extracted by gravity-drainage fro	mas	saturated water bearing stratum is called -
00.	-	Groundwater yield		Permeability
	` ′	Groundwater velocity		Groundwater flow
66	• • •	ural collapse in over reinforced beams is due to) -	
٠٠.		Primary compression failure		Secondary compression failure
	, ,	Primary tension failure	` .	Bond failure
67.	` '	ompared to working stress method of design, l	imit	state method takes concrete to -
		A higher stress level		
	` ′	A lower stress level		
	• •	The same stress level		
	(d)	Sometimes higher but generally lower stress le	evel	
68.	Worl	king stress method of design for reinforced con	ncret	e is -
		Not a limit state design		A serviceability limit state design
	(c)	A limit state for crack width	(d)	A collapse limit state
69.	Why	is the design of RC section as over reinforced	unde	esirable?
	_	It consumes more concrete		It undergoes high strains
	(c)	It fails suddenly	(d)	Its appearance is not good
70.	Doul	oly reinforced beams are recommended when	-	
		The depth of the beam is restricted		The breadth of the beam is restricted
		Both depth and breadth are restricted	(d)	The shear is high
71.	Give	n that d = Effective depth, b = width and D= o	veral	l depth, the maximum area of compression
_,		orcement in a beam is -		- -
	(a)	0.4 bd	(b)	0.04 bD
	(c)	0.12 bd	(d)	0.12 bD

72.	When	n HYSD bars are used in place of mild	steel bars in	a beam, the bond strength -
	(a)	Does not change	(b)	Increases
	(c)	Decreases	(d)	Becomes zero
73.		horter storey height, cheaper formwork loor?	and better li	ighting facilities, what is the recommended
	(a)	T beam and slab	(b)	Two way slab
	(c)	Flat slab	(d)	Framed structure
74.		combined footing, in the zones where ded are generally -	the shear st	ress are less than 5 kg/cm ² , stirrups to be
	(a)	2 - legged	(b)	4 - legged
	(c)	8 - legged	(d)	12 - legged
75.	For the	he purpose of designs per IS: 456 defl	ection of RC	C slab or beam is limited to -
	(a)	0.2 % of span	(b)	0.25 % of span
	(c)	0.4 % of span	(d)	0.45 % of span
76.	Whic	ch of the following is the weight added a	bove retaini	ng walls?
	(a)	Top loads	(b)	Surcharge
	(c)	Superimposed loads	(d)	Earth pressure
77.	Whic	h of the following is the cheapest mater	ial for retaini	ing walls?
	(a)	Brick	(b)	Wood
	(c)	Treated pine	(d)	Dry stones or boulders
78.	Breas	st walls are constructed on the	<u> </u>	
		Hillside		Valley
	(c)	Slope	(d)	Both (a) & (b)
79.	The d	lesign of retaining wall assumes that th	e retained ea	rth -
	(a)	Is dry	(b)	Is free from moisture
	(c)	Consists of granular particles	(d)	All of these
80.	The t	hickness of base slab of a retaining wal	l generally p	rovided, is -
	(a)	width of the stem at the bottom	•	
	(b)	one-third of the width of the stem at the	ne bottom	
	(c)	one-fourth of the width of the steam a	t the bottom	
	(d)	twice the width of the steam at the bot	tom.	
81.		are one of the oldest gravity w	all systems.	
	(a)	Revetment walls	(b)	Breast walls
	(c)	Crib walls	(d)	Toe walls
82.	Α	is a passive structure, which	protects aga	ainst erosion caused by wave action, storm
	surge	and currents.		·
	(a)	Revetment walls	(b)	Breast walls
	(c)	Crib walls	(d)	Toe walls
83.	Slope	e movements are classified in a number	r of ways by	-
	(a)	The type of movement	(b)	The nature of the material
	(c)	The causes of the movement	(d)	All of these

*\$

84.	The t	transition from debris slide to debris flow d	epends	on the
	(a)	Water content	(b)	Size of rock
	(c)	Depth of soil	(d)	Hardness of rock
85.	Slop	e failure may take place due to -		
	(a)	Gravitational forces	(b)	Seepage forces
	(c)	Earthquake	(d)	All of these
86.		occurs along a long surface paralle	l to the	slope, at some depth.
	(a)	Rotational failure	(b)	Translation failure
	(c)	Wedge failure	(d)	Combined failure
87.	A we	dge failure of soil mass will slide along an in	clined p	plane.
	(a)	Wedge failure	(b)	Rotational failure
	(c)	Translation failure	(d)	Combined failure
88.	In sta	ability analysis, the term mobilised shear str	ength is	s referred to as -
	(a)	Shear strength	(b)	Maximum shear strength
	(c)	Applied shear stress	(d)	None of these
89.	An ir	nfinite slope represents the inclined face of -		
	(a)	An earth dam	(b)	An embankment
	(c)	An excavation	(d)	A natural high hill
90.		is the force that acts everywhere or	the Ea	urth's surface.
	(a)	Gravity		Frictional force
	(c)	Magnetic force	(d)	All of these
91.	Whic	ch of the following statements in respect of la	andslid	e are correct?
	1.	These occur only on gentle slopes during ra	in.	
	2.	They generally occur in clay - rich soil.	٠	
	3.	Earthquakes trigger landslides.		
	Selec	et the correct answer using the code given be	elow.	
	(a)	1 & 2 only	(b)	1 & 3 only
	(c)	2 & 3 only	(d)	1, 2 & 3
92.	When	n a boulder tumbles down a hillside, it's a go	od exa	mple of what type of landslide?
	(a)	A translational slide	(b)	A lateral spread landslide
	(c)	A lahar	(d)	A fall or topple slide
93.		equake shaking and other factors can also in	iduce la	andslides underwater. These landslides are
	called		(h)	Post slide
		Major landslide Submarine landslide	` '	Minor landslide
	` '	•	(a)	Willor landshide
94.	-	parameter that determine the landslides is -	.4!1	· · · · · · · · · · · · · · · · · · ·
	• •	Increase of shear stress and decrease of ma		-
	` '	Decrease of shear stress and increase of ma	ateriai S	sucugui.
	` '	Increase of shear stress only.		
	(u)	Decrease of material strength only.		

95.	WILL	n of the following is the remedial step for land	snaes	S (
	(a)	Modification of slope geometry	(b)	Planting more trees
	(c)	Compacting the earth	(d)	Cutting the trees
96.	Ident	ify the man-made factor responsible for landsli	ide ar	nong the following:
	(a)	Steep slopes	(b)	Land use pattern
	(c)	Poor drainage	(d)	Stiffness of slope
97.	Wha	t is the characteristic of the mass above and be	low a	a landslide respectively?
	(a)	Both stable	(b)	Both unstable
	(c)	Unstable and stable	(d)	Stable and unstable
98.	Sinki	ng or settling of the ground in almost vertical of	lirect	ion naturally is called
	(a)	Flowage	(b)	Sliding
	(c)	Avalanche	(d)	Subsidence
99.	In wh	nich type of slide, weather conditions play a ve	ry im	portant role?
	(a)	Translational sliding	(b)	Rotational sliding
	(c)	Rock toppling and falls	(d)	Subsidence
100.	Trans	slational sliding is quite common in slopes ma	de up	of
	(a)	Rocks	(b)	Cohesive soils
	(0)	Rocks and non-cohesive soils	<i>(</i> b)	Rocks and cohesive soils
