CHEMISTRY PAPER - II

Time Allowed: 3 hours Maximum Marks: 100

QUESTION PAPER SPECIFIC INSTRUCTIONS

(Please read each of the following instruction carefully before attempting questions)

There are eight (8) questions - four (4) questions each in Part A & B. Each question carries 20 marks.

Marks for each question is indicated against it.

Compulsory questions:

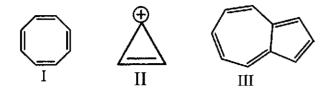
- (a) Question No. 1 from Part-A and
- (b) Question No. 5 from Part-B [Compulsory questions No. 1 & 5 have 4 (four) Sub-questions carrying 5 marks each.]

Total No. of questions to be attempted:

5 (five) questions.

[A candidate shall attempt 2 (two) compulsory questions from Part A and B. Out of the remaining 6 (six) questions, 3 (three) are to be attempted taking at least 1 (one) but not more than 2 (two) questions from each Part]

Word Limit:

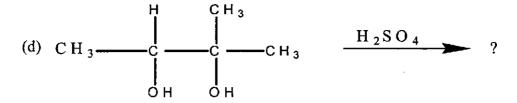

- (a) Compulsory questions carrying 5 marks shall have a limit of 150 words.
- (b) There shall be no word limit for the remaining questions.

PART-A

1. Answer the following questions:

 $(4 \times 5 = 20)$

(a) State Huckel's rule of aromaticity. Predict whether the following compounds are aromatic or not. Explain.



- (b) Explain the effect of solvent on $S_N 1$ an $S_N 2$ reactions.
- (c) Based on FMO approach, predict the product and stereochemistry of the given reaction:

- (d) Draw the van der Waals interaction and disulfide bond in tertiary structure of protein.
- 2. Complete the reactions giving suitable mechanisms:

 $(4 \times 5 = 20)$

(c)
$$+ HO - CH_2 - CH - CH_2OH - CH_2OH - CH_5NO_2$$

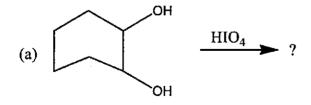
3. (a) Differentiate between transition state and intermediate with the help of energy profile diagram.

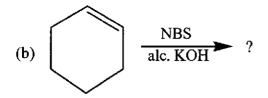
(7) (7)

- (b) Explain regioselectivity of E2 reaction based on Saytzeff rule.
- (c) How does inductive effect play a role in the stabilization of primary, secondary and tertiary carbocations? **(6)**
- (a) Based on Woodward-Hoffmann rule, explain the [4+2] cycloaddition reaction. **(7)** 4.
 - (b) Give the preparation, properties and uses of HDPE and LDPE. **(7)**
 - (c) Explain how Isotope labelling can ascertain reaction mechanism by taking suitable examples.

(6)

PART - B


5. Answer the following questions:


 $(4 \times 5 = 20)$

(a) Give the products of the given reaction with suitable mechanism:

$$H_3C$$
— CH == CH_2 H_2O_2 , NaOH ?

- (b) Write short notes on Internal conversion and Inter system crossing in photophysical processes.
- (c) Using the model of a water molecule, explain the terms 'symmetric' and 'asymmetric vibrations'.
- (d) Discuss the fragmentation pattern of pent-2-ene in mass spectrometry.
- **6.** Give the product(s) with suitable mechanisms of the following reactions: $(4 \times 5 = 20)$

(c) HOOC—CH ——CH——COOH
$$\xrightarrow{\text{OsO}_4}$$
 $\xrightarrow{\text{H}_2\text{O}}$

(d)
$$SeO_2$$
 ?

- 7. (a) What do you understand by Raman shifts? (6)
 - (b) Differentiate between Stokes lines and anti-Stokes lines. (7)
 - (c) What are the fundamental vibrations of CO₂ molecule? Indicate whether they are IR or Raman active. (7)
- 8. (a) How can you distinguished 3-pentanone and 2-pentanone from their mass spectra? (7)
 - (b) Calculate λ_{max} for the given molecule. (6)

(c) An organic compound having molecular formula $C_{10}H_{12}O_2$ gave IR band at 1740cm⁻¹. The H_{NMR} shows triplet at $\delta = 1.2(3H)$; Singlet at $\delta = 3.5(2H)$; quartet at $\delta = 4.1$ (2H) and a multiplet at $\delta = 7.3(5H)$. Predict the structure with proper explanation. (7)
