MIZORAM PUBLIC SERVICE COMMISSION

Competitive Examination for Recruitment to the Post of Geologist under Commerce & Industries Department, Government of Mizoram, October-2024

GEOLOGY PAPER - II

Гime	Allowed: 2 hours			OEO FM: 200		
		All questions carry	equal mar	k of 2 each.		
		Attempt at	ll question	(c) Carbon coated than seuribury.		
1.	In the 14 Bravais la	attice, which of the following	ng crystal s	ystem produce rhomohedral lattice?		
	(a) Triclinic Syst		(b)	Hexagonal System		
	(c) Isometric Sys		(d)	Orthorhombic System		
2.	Which one of the fo	ollowing point group is havi	ng the max	imum number of symmetry?		
	(a) $4/m\overline{3}2/m$	morrismiA (d	(b)	6/m2/m2/m		
	(c) $4/m2/m2/m$			442		
3.		on having $\lambda = 1.5418 \text{Å}$ standard s		on {111} planes of atom at $\theta = 13.70^{\circ}$, let quation will yield -		
	(a) 0.814Å		(b)	1.085Å		
	(c) 1.627Å		(d)	3.255Å		
4.	Which of the follow	ving statement is correct for	birefringe	nce of minerals?		
	(a) Directions of light parallel to the optic axis show zero birefringence.					
	(b) Higher the in	terference colour of a mine	ral, the low	ver is its birefringence.		
	(c) Birefringence	e equal to the value $(n_f - n_s)$	where n _f i	s fast ray, n _s is slow ray.		
	(d) Interference	colour and birefringence ha	s no relatio	onship.		
5.	A geometric figure through a material		action and	vibration direction for passing any direction		
	(a) Optical indica	atrix.	(b)	Isogyre.		
	(c) Melatopes.		(d)	isochromes.		
6.	is a	nother name for triclinic.				
	(a) Pinacoidal		(b)	Dome more mentance of		
	(c) Sphenoids		(d)	Prisms suble (a)		
7.	Type of bonds in di	amond.		lonie Antago (a)		
	(a) Metallic bond	ds so visiting to talestam to	(b)			
	(c) Covalent bor	ia. (b) Saturated alical abou	(d)	Hydrogen bonds		
8.	The end members	of orthopyroxenes are -				
	(a) Enstatite and	jaedite.	(b)	Diopsite and augite.		
	(c) Diopsite and	hedenbergite.	(d)	Ferrosilite and enstatite.		

9.	Oxid	es of alkalis in AFM diagram is having compo	nent e	of-
		FeO+MgO		Na ₂ O+K ₂ O
	(c)	FeO+Al ₂ O ₃		Na ₂ O+Al ₂ O ₃
10.	Doub	ole refractions are never observed in mineral w	hich	crystallizes on -
		Triclinic system		Monoclinic system
	(c)	Isometric system	(d)	Tetragonal system
11.	The c	hemical formula of olivine is -		
	(a)	$(Mg, Fe)_2 SiO_4$	(b)	$Mg_3Al_2(SiO_4)_3$
		CaTiOSiO ₄	(d)	$(Mg, Fe)_2Si_2O_6$
12.	In EF	PMA analysis, the sample is prepared in the for	rm o	f-
	(a)	Dissolved solution	(b)	Powdered forms
	(c)	Carbon coated thin section	(d)	Polished section impregnated in resins.
13.		n the minimum radius ratio, R _A :R _X is 1.0, the Cers of a cuboctahedron (close packing) is -	Coord	lination Number for packing geometry with
	(a)	C.N. 4	(b)	C.N. 6
	(c)	C.N. 8	(d)	C.N. 12
14.	The r	nost abundant element with reference to bulk g	geocl	hemical composition of the earth's crust is
	(a)	Silicon	b)	Aluminium
	(c)	Oxygen	d)	Iron
15 .	Whic	ch one is not a member of clinopyroxene?		
	(a)	Augite	(b)	Diopsite
	(c)	Enstatite	(d)	Jadeite
16.	Hard	ness of apatite on Moh's scale is -		
	(a)	2	(b)	3
	(c)	4	(d)	5
17.	Whi	ch decay isotope does not produce radiogenic	heat	?
	(a)	Uranium	` ,	Carbon
	(c)	Thorium	(d)	Potassium
18.	•	xenes have different cleavage planes that inter		
	` '	67° and 93°	` ′	87° and 93°
	• •	87° and 103°	` ,	67° and 103°
19.	Whi	ch of the following clay mineral is used for dati		
	• /	Glaucophane	` ′	Rutile
	(c)	Chlorite	(d)	Glauconite
20.		inant composition of Fuller's earth is -		
		Calcite	` '	Montmorillonite
	. ,	Quatrz	(d)	
21.		ch of the following is assumed to be the parent		
		Undersaturated alkaline olivine-basalt magma.		
,	(c)	Thleiitic magma.	(d)	Komatiite.
22.		factor which influence magma generation inclu		
	` ′	lowering T at constant P.	` '	viscosity contrast.
	(c)	adiabatic compression.	(d)	unchanging of phase.

23.	3. Which of the following phase diagram is referred as a fairly realistic mantle analogue?			
	(a)	Di-Fo-Si	(b)	Fo-Di-En
	(c)	Fo-An-Si	(d)	Di-An-Ab
24.	The (CIPW norm calculates mineral composition as	sumi	ng the magma were -
	(a)	hydrous and at high pressure.	(b)	hydrous and at low pressure.
	(c)	anhydrous and at high pressure.	(d)	anhydrous and at low pressure.
25.	The	peritectic temperature of crystallization of mel	ts in t	the system Di-Fo-Si is -
	-	1150 °C		1557 °C
	(c)	1540 °C	(d)	1247 °C
26.	Whe	n plagioclase is totally surrounded by pyroxen	e gra	ins, it is termed as -
		Pegmatitic texture	_	Ophitic texture
	(c)	Phaneritic texture	(d)	Pyroclastic texture
27.	Lam	prophyres generally occurs as -		
	· -	Laccolith	(b)	Plutons
	(c)	Dykes	(d)	Batholith
28.	Igneo	ous rock having more than 90% olivine conten	t by v	volume is -
	_	Dunite	•	Rhyolite
	(c)	Kimberlite	(d)	Granite
29.	If fin	e microlites of feldspars are dispersed in a gla	ssy g	roundmass of basalt, the texture is called -
		Pilotaxitic texture		Hyalopilitic texture
	(c)	Ophitic texture	(d)	Intersertal texture
30.		ch of the following textures indicate simultaneo ine magma?	us cr	ystallization at the close of crystallization of
		Granophyric texture	(b)	Myrmekitic texture
	. ,	Trachytic texture		Spherulitic texture
31.	In IU	GS classification of igneous rocks, anorthosit	e is re	epresented v the composition of-
		more than 90 % olivine with hornblende and		
	(b)	more than 90 % plagioclase with other mafic	-	•
	(c)	more than 90 % hornblende with plagioclase	and o	orthopyroxene.
	(d)	more than 90 % pyroxene with olivine and ho	rnble	ende.
32.		ch of the following is a high-Mg, high-temperambrian time?	ratur	e volcanic rocks extruded during the early
	(a)	Tholeiite	(b)	Melteigite
	(c)	Komatiite	(d)	Basanite
33.	The i	gneous rock that contain more than 50 % of c	arboı	nate minerals are known as -
	(a)	Melilitites	(b)	Tephrites
	(c)	Phonolites	(d)	Alvikites
34.	Bron	zite is common in -		
	(a)	Gabbro and norite	(b)	Pegmatite and peridotite
	(c)	Diabase and lopolith	(d)	Pillow basalt and dolerite dyke
35 .	Pluto	onic rocks chemically undersaturated with resp	ect to	silica is -
	(a)	Granite	(b)	Granodiorite
	(c)	Tonalite	(d)	Nepheline Syenite

36.	The la	ast minerals to crystallize in Bowen's reaction	serie	s include -
		Olivine		Pyroxene
	(c)	Quartz	(d)	Plagioclase
37.	In the	four zones of the Bushveld Complex of S. Afric	a, the	main critical series (MCR) is constituted by-
	(a)	diorite and granophyres.	(b)	two-pyroxene gabbros.
	(c)	plagioclase-bronzite-chromite rock.	(d)	peralkaline rocks.
38.	The t	ypical feldspar found in low-K Rhyolite is -		
	(a)	Sanidine	(b)	Anorthoclase
	(c)	Microcline	(d)	Plagioclase
39 .	Kimb	perlite rock is -		
	(a)	Basic igneous rocks.	(b)	Ultrabasic igneous rocks.
	(c)	Intermediate igneous rocks.	(d)	Felsic igneous rocks.
40 .	On a	phase diagram, the solidus curve is -		
	(a)	Temperature above which only solid is stable.	(b)	Temperature below which only solid is stable.
	(c)	Pressure above which only solid is stable.	(d)	Pressure below which only solid is stable.
41.	Rock	s prone to directed pressure and often show s	evere	est degree of metamorphic changes -
	(a)	situated near the plate boundaries.	(b)	situated at the center of plates.
	(c)	situated inside the plates.	(d)	degree of severity is same everywhere.
42 .	Large	e scale metamorphism associated with increase	es in l	both temperature and pressure best defines-
	(a)	Chlorite and biotite zones	(b)	Garnet and staurolite zones
	(c)	Kyanite and sillimanite zones	(d)	Biotite and staurolite zones
43.	In ma	afic rocks, the greenschist-amphibolite facies	transi	ition is designated by the appearance of-
	(a)	Hornblende and Ca-rich plagioclase.	(b)	Actinolite and Na-rich plagioclase.
	(c)	Oilvine and clinopyroxene.	(d)	Orthopyroxene and nepheline.
44.	Whic	ch of the following statement is correct in terms	s of th	ne concept of metamorphism?
	(a)	Metamorphism do not brought about change	in ph	ase of mineral stability.
	(b)	Metamorphic grade pure representation of dy	nami	ic change in temperature.
		Metamorphism results in mineralogic and tex		_
	(d)	Metamorphic isograd is assumed to provide	absol	ute values for P, T and composition.
45.	Sche	me for describing and classifying metamorphic	e rocl	ks on the basis of their mineralogy is -
	(a)	Metamorphic facies	(b)	Metamorphic grades
	(c)	Metamorphic zones	(d)	Metamorphic isograd
46.	The i	nitiation of low grade metamorphism in volca	nic ar	nd sedimentary rocks is indicated by -
		formation of glaucophane and lawsonite.		·
		recrystallization of alumina rich minerals to ze	olite.	
		recrystallization of quartz forming quarzites.		
	(d)	formation of tremolite-actinolite.		
47.	The t	total succession of minerals preserved in a meta	astabl	le state in the structure of metamorphic rock
		signated as -		•
		mineral paragenesis.	(b)	mineral assemlage.
	• •	mineral association.	(d)	coexisting minerals.
48.	, ,	ch one of the following is not regarded as catao	clasti	c rocks?
		Pseudotachylite		Fault gauge
	` ′	Fault breccia	` ,	
	- ペープ		. /	-

49.		etasomatic Ca-Fe-Mg-(Mn)-silicate rock former m in mutual contact is known as -	ed by	the interaction of a carbonate and a silicate
	•	Skarn	(b)	Restite
		Rodingite	(d)	Metapsamite
50.	` '	lite is a metamorphic rocks.	` ′	•
	-	Foliated	(b)	Lineated
	` ,	Schistose	` /	Gneissic
51.	` ′	ch one is a product of high-grade metamorphis	m?	
01.		Khondalite		Quartzite
	` ′	Homfels	(d)	Talc
52.	• •	Barrovian facies series of eastern Scottish Hig	hland	ls are characteristic for -
0		high-pressure metapelite.		medium-pressure metapelite.
		low-pressure metapelite.		high-pressure eclogite.
53.	` .	concept of metamorphic zone in progressive re	giona	al metamorphism was introduced by-
		A. Harkar		F. F. Grout
	` '	G. Barrow	` '	F. Becke
54.	` ` ′	ch of the following phase diagrams proved extre	me si	uitability to show mineralogic relationship in
· · ·		pelites?		,
	(a)	ACF diagram	(b)	AKF diagram
	(c)	AFM diagram	(d)	Both ACF and AKF diagrams
55.		ch of the following metamorphic reactions reserals from metamorphic rocks?	ults i	n an abrupt appearance or disappearance of
	(a)	Dehydration reactions	(b)	Solid-solid reactions
	(c)	Univariant reactions	(d)	Divariant reactions
56.		opyroxene-bearing rocks with igneous texture a ock is igneous or metamorphic are known as -		ranitic composition, irrespective of whether
	(a)	enderbyite	(b)	mangerite
	(c)	charnockite	(d)	jotunite
57.	Whi	ch facies represent highest grade of metamorph	ism?	
	(a)	Granulite facies	(b)	Greenschist facies
	(c)	Blueschist facies	(d)	Amphibolite facies
58.	The	diagnostic mineral assemblages in Granulite f	acies	of ultramafic rocks is represented by
	(a)	Opx + Qtz	(b)	En + Fo + Di + Spl
	(c)	$Omp + Grt \pm Qtz$	(d)	Pl + Cpx + Grt
59.	The	key mineral in high-grade metapelites at low-	o me	dium-pressure is -
	(a)	Cordierite	(b)	Garnet
	(c)	Spinel	(d)	Sapphirine
60.	Whic	ch of the following mineral assemblages indicate th	e tran	sition of facies from granulite to eclogite facies?
		Ab + Tr = Ed + 4Qtz		$Pg = Jd + Ky + H_2O$
	` ′	Py + Fo = 2En + Spl		Spl + Qtz = Crd
61.	` '	iolarian and diatomaceous oozes are both type	s of -	-
- 		Carbonaceous oozes		Phospatic oozes
		Siliceous oozes	` '	Calcareous oozes

62.	Base	Based on the Phi scale formula, the grain diameter of 2mm is -		
	(a)	,	` '	-1ϕ
	(c)	-2 ø	(d)	$+1 \phi$
63.	Whic	th of the following clay minerals is swelling clay		
	(a)	Kaolinite	(b)	Illite
	(c)	Chlorite	(d)	Smectite
64.	Thep	orimary criterion used in Dunham's classification	on of	limestone is -
	(a)	Texture	(b)	Framework
	(c)	Grain size	(d)	Mineral composition
65.		ch of the following sandstone types is likely to nering of Granite?	form	by the intense weathering and mechanical
	(a)	Arkose	(b)	Greywacke
	(c)	Quartz arenite	(d)	Litharenite
66.	Whic	ch of the following sedimentary structures is no	t rela	ated to typical Bouma Sequence?
	(a)	Lamination	(b)	Graded bedding
	(c)	Ripple marks	(d)	Large scale cross-bedding
67.	Whic	h of the following is a flow axis indicator in pa	laeo-	current analysis?
		Cross-lamination		Groove cast
	` '	Crossbedding	(d)	Flue cast
68.	Litho	some is -		
		a rock body that has single occurrence in a sin	ıgle g	geologic unit.
		a mass of rock of irregular character, characterized by geometry, composition, and internal structure.		
		a kind of rock body that has multiple occurrences in a single geologic unit.		
		a mass of rock of irregular geometry characterized by deposition and internal structure.		
69.	In wh	nich environment is limestone most likely to for	m?	-
		Shallow, calm, warm marine waters		Shallow, calm, cold marine waters
	` '	Deep, calm, cold marine waters		Deep, calm, warm marine waters
70.	` ,	the textural characteristic likely to be observed in glacial till is -		
		well sorted.		moderately sorted.
	` '	poorly sorted.		texturally mature sediments.
71	. ,	th of the following features indicate transportat	` '	•
, 14		Ripple marks		Graded bedding
	` ′	Mud-clasts	` ′	Laminations
72	` ′	ch type of cross-bedding is formed by tidal curr	` ′	
14.		Herringbone cross-stratification		Hummocky cross-bedding
	` '	Tabular cross-bedding	(d)	Trough cross-bedding
77	` '	Ť	` ,	<u> </u>
/3.		th of the following zones is called <i>carbonate fact</i>	-	<u> </u>
	` ,	Neritic zone	` '	Photic zone
	` ′	Hadal zone	(d)	Littoral zone
74.		t type of sediment is deposited in the deepest p		
	7 .	Hemipelagic sediments	• •	Pelagic clays
	(c)	Chemogenic minerals	(d)	Fine-grained clastic and nonclastic sediments

75.	Lime	stone and bauxite show	structure.	
	(a)	Concentric	(b)	Spherical
	(c)	Oolitic	(d)	Pisolitic
76.			t-laden grav	rity flows and represents the first predictive
		el in sedimentology.		
		Diagenesis	, ,	Bouma sequence
	• •	Lithification	` ´	Ripple mark
77.			exactly bala	nced by the rate of sediment supply, which
		nentary sequence would you observe?	(1.)	Description
		Retrogradation		Progradation
70	` '	Aggradation	(d)	Parasequence
78.		ch of the following heavy minerals indica	_	-
		Titanite Tourmaline	• •	Diopside Staurolite
70	(c)		` /	
19.		order of precipitation of minerals from s		
	` ′	Calcite, Anhydrite, Halite, Gypsum Dolomite, Anhydrite, Halite, Gypsum	` ,	Calcite, Gypsum, Anhydrite, Halite Dolomite, Halite, Anhydrite, Gypsum
00	• •	• • • • • • • • • • • • • • • • • • • •	` ,	• • • • • • • • • • • • • • • • • • • •
80.		gh both breccia and conglomerates are		•
		shape of clasts.		size of clasts.
04		cementing material.		nature of deposition.
81.		latitude jet streams tend to be strongest		77% 1
		Stratosphere	(b)	Thermosphere
	` '	Tropopause	(a)	Mesosphere
82.		en Island is famous for which activity?		
	` ′	Tsunami	(b)	Earthquake
	(c)	Volcanism	(d)	Coastal erosion
83.	Whice Geole	_	cept II of th	ne fundamental concept of Environmental
	(a)	Population Growth.	(b)	Sustainability.
	(c)	Systems.	(d)	Limitation of Resources.
84.	Whic	h of the following contribute the highes	t rate in gree	enhouse effect?
		CFC-12	-	CFC-11
	(c)	N ₂ O	(d)	CH ₄
85.		th of the following is the potential effect		4
		Increase in particulates.	_	Climate pattern.
		El Nino.		Both (b) & (c)
96	` '		(4)	2011 (0) 20 (0)
ou.		e depletion is due to - the broken down of CFCs by UV radia	ations in the	a ctrotocnhara
		reaction between chlorine and CFCs.	ations in the	stratosphere.
	` ,	reaction between chlorine and O ₃ .		
		reaction of ClO + O.		
97		wo important nutrients released from h	ıman activi	ties that can cause water notherion are
0/.		Phosphorus and nitrogen.		Iron and magnesium.
	, ,	Calcium and potassium.		Nickel and manganese.
	(~)	отогин ине рошолин.	(u)	i woner and manganese.

88.	Aquifer contamination of groundwater in m	ainland can be attributed to -		
	(a) deforestation.	(b) saline water intrusion.		
	(c) overpumping of groundwater.	(d) water supply system for human use.		
89 .	Which of the following chemicals does not cause water pollution?			
	(a) Arsenic	(b) Copper		
	(c) Zinc	(d) Calcium		
90.	Areas in risk of Tsunami are less than	feet above sea level.		
	(a) 15	(b) 25		
	(c) 35	(d) 45		
91.	The threshold of hearing is -			
	(a) the lowest sound level at which a per	son's ear can detect a sound.		
	(b) the loudest sound level at which a per	rson's ear can detect a sound.		
	(c) the range of sound level for a person.			
	(d) the average sound level in Tier 1 city.			
92.	In soil horizons, the highly concentrated org	ganic materials are encountered in -		
	(a) only in the O horizon.	(b) O and A horizons.		
	(c) B and C horizons.	(d) K and R horizons.		
93.	Which of the following poses high threat to s	soil quality?		
	(a) cadmium	(b) sodium		
	(c) calcium	(d) potassium		
94.	Which of the following is authorised by the	Central Government to implement Noise Rules 2000 in		
	the State of Mizoram?			
	(a) Chief Secretary	(b) District Commissioner		
	(c) Chief Minister	(d) Home Minister		
95.	Which one of the following is not normally of	dealt with in the EIA?		
	(a) Plan of project	(b) Programme and policy of project		
	(c) Mitigation of impacts of project	(d) Environmental audit procedure		
96.	. Which of the following authorised the Central Government to protect and improve environment			
	quality, control and reduce pollution from al			
	(a) The Environment (Protection) Act 19			
	(b) The Environment (Protection) Rule 19			
	(c) Hazardous waste (Management and E(d) The National Environmental Tribunal	_ .		
07	· /			
97.	The most common natural hazards with refe (a) Forest fires	(b) Landslide		
	(c) Earthquake	(d) Flood		
Δ0	* · · · · · · · · · · · · · · · · · · ·			
70.	The maximum limit of nitrate in drinking was	(b) 30 ppm		
	(a) 15 ppm (c) 50 ppm	(d) 70 ppm		
00		` ' • • • • • • • • • • • • • • • • • •		
99	The total number of scale in Modified Merc	•		
	(a) 16 (c) 12	(b) 14 (d) 10		
1 በ በ				
1 VV.	Earthquake damages to buildings and other (a) P wave	(b) S wave		
	(c) combinations of P and S waves	(d) Surface waves		
	(v) comomadons of f and 5 waves	(d) Duriace waves		

* * * * * *