MIZORAM PUBLIC SERVICE COMMISSION

TECHNICAL COMPETITIVE EXAMINATIONS FOR JUNIOR GRADE OF MIZORAM ENGINEERING SERVICE (COMBINED) UNDER VARIOUS DEPARTMENT,

GOVERNMENT OF MIZORAM, JULY-2024

ELECTRICAL ENGINEERING PAPER-I

Time Allowed: 3 hours

FM: 200

SECTION - A (Multiple Choice questions) (100 Marks)

All questions carry equal mark of 2 each. Attempt all questions.

This Section should be answered only on the **OMR Response Sheet** provided.

		This section should be unswered only on th	ie <u>01</u>	<u>nk kesponse sneer</u> provided.	
1.	A delta circuit has each element of value R/2. The equivalent elements of star circuit will be				
	(a)	R/3	(b)	R/6	
	(c)	2R	(d)	3R	
2.	The circuit has resistors, capacitors and semi-conductor diodes. The circuit will be known as				
	(a)	non-linear circuit	(b)	linear circuit	
	(c)	bilateral circuit	(d)	none of the above	
3.	For a two-port symmetrical bilateral network, if $A = 3$ and $B = 1$, the value of the parameter C will be				
	(a)	4	(b)	6	
	(c)	16	(d)	8	
4.	The voltage applied across a capacitance is triangular in waveform. The waveform of the current is				
	(a)	triangular	(b)	rectangular	
	(c)	sinusoidal	(d)	trapezoidal	
5.	A balanced 3-phase,3-wire supply feeds balanced star connected resistors. If one resistor is disconnected, then the percentage reduction in the load will be				
	(a)	33.33 %	(b)	50%	
	(c)	66.66%	(d)	75%	
6.	Laplace transform of unit ramp function starting at $t = a$ is				
	(a)	$\frac{e^{-as}}{s^2}$	(b)	$\frac{e^{-as}}{\left(s+a\right)^2}$ $\frac{a}{s^2}$	
	(c)	$\frac{1}{\left(s+a\right)^2}$	(d)	$\frac{a}{s^2}$	

7. In the below circuit, the switch is moved from a to b at t = 0, the i(t) will be

(a) $10e^{-10t}$

(b) $e^{-0.5t}$

(c) $0.5e^{-0.5t}$

- (d) $10e^{-0.5t}$
- 8. Maxwell's divergence equation in case of static electric field is
 - (a) $\nabla .E = \rho$

(b) $\nabla XE = \rho$

(c) $\nabla .E = \frac{\rho}{\varepsilon_0}$

(d) $\nabla .E = 0$

- 9. Electrostatic field is
 - (a) solenoidal

- (b) conservative
- (c) both solenoidal and conservative
- (d) sometimes solenoidal, sometimes conservative
- 10. Find the Lorentz force due to a conductor of length 2m carrying a current of 1.5A and magnetic flux density of 12 units.
 - (a) 24

(b) 32

(c) 36

- (d) 45
- 11. The force between two charges is 200 N. If the distance between the charges is doubled, the force will be
 - (a) 400N

(b) 100N

(c) 200N

- (d) 50N
- 12. Calculate the energy in an electric field with flux density 6 units and field intensity of 4 units.
 - (a) 12

(b) 24

(c) 36

- (d) 48
- 13. On which of the following factors does the resistivity of a material depend?
 - (a) Resistance of the conductor
- (b) Area of the conductor section

(c) Length of the conductor

- (d) All of these
- 14. In a superconductor the value of critical density depends upon
 - (a) magnetic field strength

(b) temperature

(c) both (a) & (b)

- (d) either (a) or (b)
- 15. Surface resistance of an insulating material is reduced due to the
 - (a) smoky and dirty atmosphere
- (b) humidity in the atmosphere

(c) both (a) & (b)

- (d) neither (a) nor (b)
- 16. A series R-L-C circuit will have unity power factor if it is operated at a frequency
 - (a) 1/LC

(b) $1/\omega \sqrt{LC}$

(c) $1/\omega LC$

(d) $1/2 \pi \sqrt{LC}$

17.	Time constant of a series RC circuit is					
	(a) RC	(b)	R/C			
	(c) C/R	(d)	1/(RC)			
18. Magnetic susceptibility ferro-magnetic materials is						
	(a) $+10^{-5}$	(b)	-10 ⁻⁵			
	(c) 10^5	(d)	10 ⁻⁵ to 10 ⁻²			
19.	What is the conductivity when the Hall Effect coefficient is 5 and mobility is 5cm ² /s?					
	(a) 100 S/m		10 S/m			
	(c) 0.0001S/m	(d)	0.01 S/m			
20.	Frequency can be measured by using		·			
	(a) Maxwell's bridge	(b)	Schering bridge			
	(c) Kelvin double bridge	(d)	Wien's bridge			
21.	PMMC type instruments normally use					
	(a) Air friction damping	(b)	Fluid friction damping			
	(c) Eddy current damping	(d)	None of these			
22.	Ohm's law in point form in field theory can be exp	resse	d as			
	(a) V=RI		$J=E/\sigma$			
	(c) $J = \sigma E$	(d)	$R = \rho I/A$			
23.	For measuring a very high resistance we should use	e				
	(a) Kelvin's double bridge		Wheat stone bridge			
	(c) Meggar	(d)	None of these			
24.	Poynting vector is					
	(a) The current density vector producing electros	static	s field			
	(b) The current density vector producing electron					
	(c) The power density vector producing electros	tatics	field			
	(d) The power density vector producing electron	nagne	tic field			
25.	Form factor of sine wave is					
	(a) 0.637	(b)	0.707			
	(c) 1.11	(d)	1.414			
26.	Two coils having self-inductances 15 mH and 5 m	H and	d mutual inductance 1 mH are connected in			
	series with adding mode. The equivalent Inductance					
	(a) 22.2 mH	` ′	19.8 mH			
	(c) 21 mH	(d)	22 mH			
27.	At $t = 0$ + with zero initial condition, which of the fo	ollow	ing will act as short circuit?			
	(a) Inductor	(b)	Capacitor			
	(c) Resistor	(d)	None			
28.	A moving-coil permanent-magnet instrument can be used as flux-meter					
	(a) by using a low resistance shunt					
	(b) by using a high series resistance					
	(c) by eliminating the control springs					
	(d) by making control springs of large moment of	f iner	tia			

29.	In majority of instruments damping is provided by	<i>Y</i>	
	(a) fluid friction	(b) spring	
	(c) eddy currents	(d) all of these	
30.	For a distortion less line the parameters are related	ed as	
	(a) R/G=C/L	(b) R/G=L/C	
	(c) RG=LC	(d) $R/L=1$	
31.	Polarization in dielectric material is due to creation	on of	
	(a) Electric field	(b) Electromagnetic field	
	(c) Eddy currents	(d) Electric dipole	
32.	Which of the following is applicable for both lines	ar and non-linear circuits?	
	(a) Thevnin's theorem.	(b) Norton's theorem.	
	(c) Superposition theorem.	(d) None of these	
33.	If $a = 4 < 20^{\circ}$ and $b = 2 < 10^{\circ}$ then the value of a	a/b, will be	
	(a) $2 < 10^{\circ}$	(b) 2 < 30°	
	(c) $2 < -10^{\circ}$	(d) 2 < 20°	
34.	The number of comparator circuits required to bu	uild a three-bit simultaneous A/D converter is:	
	(a) 15	(b) 7	
	(c) 8	(d) 16	
35.	The current in the 4Ω resistor shown in network	of Figure.	
55. The culter in the 122 resident shown in incomment of Figure.			
	$4 A $ \uparrow $ \leq 2 \Omega $		
	(a) 1.33 A	(b) 2.66 A	
	(c) 1.5 A	(d) 2.33 A	
36	A voltmeter uses 4½ digit display. What will be the	he resolution?	
50.	(a) 0.00001	(b) 0.01	
	(c) 0.0001	(d) 0.001	
27	Creeping in a single phase induction type energy		
37.	(a) Overcompensation for friction	(b) Overvoltage	
	(c) Vibrations	(d) All of these	
20	Which instrument cannot be used both for a.c. &		
30.	(a) Dynamometer type	(b) Induction type	
	(c) Electrostatic type	(d) Moving iron type.	
20	A Wheatstone bridge cannot be used for precision	• • • • • • • • • • • • • • • • • • • •	
<i>5</i> 9.	(a) Resistance of connecting leads	(b) Thermo-electric emf	
	(c) Contact resistance	(d) All of these	
	(c) Contact resistance	(3)	

40.	A 1mA ammeter has a resistance of 100 ohms. It is to be converted to a 1A ammeter. The value of shunt resistance is					
		0.001ohm	(b)	0.1001 ohm		
	` '	100000 ohm	()	100 ohm		
41.	The instrument, which gives the value of the quantity to be measured in terms of instrument constant & its deflection, is called the					
	(a)	Absolute instrument	(b)	Secondary instrument		
	(c)	Recording instrument	(d)	Integrating instrument		
42.	In measurement systems, which of the following static characteristic(s) is/are desirable?					
	(a)	Accuracy	(b)	Sensitivity		
	(c)	Reproducibility	(d)	All of these		
43.	The electric field at a point situated at a distance d from straight charged conductor is					
	(a)	proportional to d	(b)	inversely proportional to d		
	(c)	inversely proportional to d	(d)	none of these		
44.	The a	ability of charged bodies to exert force on one	anotl	her is attributed to the existence of		
		electrons		protons		
	(c)	neutrons	(d)	electric field		
45.		"The total electric flux through any closed surface surrounding charges is equal to the amount of				
	charge enclosed". The above statement is associated with (a) Coulomb's square law (b) Gauss's law					
	` ,	Coulomb's square law Maxwell's first law	()	Maxwell's second law		
4.0	,		` /			
46.		magnitude of the induced e.m.f. in a conductor	-			
	` '	flux density of the magnetic field	` ′	amount of flux cut		
	, ,	amount of flux linkages	, ,	rate of change of flux-linkages		
47.		rite core has less eddy current loss than an iro				
	` ,	ferrites have high resistance	` '	ferrites are magnetic		
	` ,	ferrites have low permeability	` ′	ferrites have high hysteresis		
48.		on steel is used in electrical machines because i				
	` ,	low co-ercivity	` ′	low retentivity		
	(c)	low hysteresis loss	(d)	high co-ercivity		
49.	Inar	magnetic material hysteresis loss takes place pr	rimar	ily due to		
	(a)	rapid reversals of its magnetisation	(b)	flux density lagging behind magnetising force		
	(c)	molecular friction	(d)	it high retentivity		
50.	For which of the following materials the net magnetic moment should be zero?					
	(a)	Diamagnetic materials	(b)	Ferrimagnetic materials		
	(c)	Antiferromagnetic materials	(d)	Antiferrimagnetic materials		

SECTION - B (Short answer type question) (100 Marks)

All questions carry equal marks of **5** each.

This Section should be answered only on the <u>Answer Sheet</u> provided.

- 1. From Ampere's circuital law, Prove that $\nabla XH = J + \frac{\partial D}{\partial t}$.
- 2. State and explain the Superposition theorem for DC (or AC) circuits with independent or dependent sources.
- 3. Explain briefly soft magnetic materials and hard magnetic materials.
- **4.** Explain briefly hysteresis loop with neat sketch.
- 5. Explain the formation of N-type semiconductor.
- 6. In the network shown in figure, the switch is closed at t=0, a steady state having previously been attained. Find the current i (t).

- 7. Explain briefly the principle of operation of Permanent Magnet Moving Iron (PMMI) instrument with proper circuit diagram.
- 8. Describe briefly the construction and operation of a Digital multimeter.
- 9. Determine the current through the $10\,\Omega$ resistor in figure.

10. Using Thevenin's theorem find out the current flowing through the 5Ω resistance as shown in the following figure:

- 11. A three phase balanced load operating at 230V has a power factor of 0.7. Two-watt meters are connected to measure the power which shows the input to be 10 kW. Find the reading of each wattmeter.
- 12. (a) Obtain the expression for the rms value of sinusoidal current in terms of its maximum value. (2)
 - (b) Find the rms value of a composite waveform $v(t) = 7 \sin(\omega t) + 10 \sin(\omega t + \pi/3)$. Here all the symbols have their usual meaning. (3)

- 13. Define the terms Accuracy, Precision, Resolution, Drift and Relative limiting error.
- 14. Derive the balance equations for Schering Bridge for measurement of capacitance.
- 15. State and proof divergence theorem.
- 16. Define divergence, gradient, curl in spherical co-ordinate system with mathematical expression.
- 17. Derive the expressions for boundary conditions in magnetic fields.
- 18. State the requirements of low resistivity materials and high resistivity materials.
- 19. Draw and explain briefly the energy level diagrams of conductors, insulators and semiconductors.
- **20.** Explain briefly, how to measure low resistances using Kelvin's double bridge. Derive the necessary equations.

* * * * * *