MIZORAM PUBLIC SERVICE COMMISSION

Technical Competitive Examinations for Junior Grade of Mizoram Engineering Service (Combined) under Various Department,

GOVERNMENT OF MIZORAM, JULY-2024

CIVIL ENGINEERING PAPER-II

Time Allowed: 3 hours

FM: 200

SECTION - A (Multiple Choice questions) (100 Marks)

All questions carry equal mark of 2 each. Attempt all questions.

This Section should be answered only on the **OMR Response Sheet** provided.

- 1. Determine the specific gravity of one litre (1 L) of a liquid which weighs 7 N.
 - (a) 1

(b) 0.7

(c) 1.2

(d) 0.5

- 2. What is the SI unit of viscosity?
 - (a) Poise

(b) N.s

(c) Pa.s

- (d) dyne
- 3. A pipe section has water flowing through it as shown below in figure. The diameter of a pipe at section 1 and 2 are 10 cm and 15 cm respectively. The velocity of the water flowing through the pipe at section 1 is 5 m/s. Determine the velocity at section 2.

(a) 5 m/s

(b) 3.3 m/s

(c) 2.2 m/s

- (d) $0.8 \, \text{m/s}$
- 4. The rate of change of velocity due to the change of position of fluid particles in a fluid flow is known as
 - (a) Conductive acceleration

(b) Convective acceleration

(c) Local acceleration

(d) Regional acceleration

- 5. Water is flowing through a pipe of 5 cm diameter under a pressure of 29.43 N/cm² (gauge) and with mean velocity of 2.0 m/s. Find the total head or total energy per unit weight of the water at a cross-section, which is 5 m above the datum line.
 - (a) $30.0 \, \text{m}$

(b) 25.6 m

(c) 20.7 m

- (d) 35.2 m
- 6. The head of water over an orifice of diameter 40 mm is 10 m. Find the actual velocity of the jet at vena-contracta. Take $C_d = 0.6$ and $C_v = 0.98$.
 - (a) 0.010 m/s

(b) 13.72 m/s

(c) 4.49 m/s

- (d) 15.67 m/s
- 7. A direct runoff hydrograph due to an isolated storm with an effective rainfall of 2 cm was trapezoidal in shape as shown in the figure. Determine the catchment area that this hydrograph corresponds to.

(a) 119.8 km^2

(b) 599.4 km²

(c) 799.5 km^2

- (d) 1099.5 km²
- **8.** The below given diagram shows the curve of a hydrograph. Which of the following would cause the peak of the curve to shift to the right?

- (i) When the length of the overland flow is more
- (ii) When the slope of the land surface is less
- (iii) When the runoff is more
- (iv) When the rainfall is moderate.

Select the correct answer using the codes given below:

(a) (iii) and (iv)

(b) (ii) and (iv)

(c) (i) and (ii)

(d) (ii), (iii) and (iv)

9	Immediately after a rain, when all the gravity water has drained down to the water table, a cert amount of water is retained on the surface of the soil grains by molecular attraction and is not read available to the plants, is known as				
	(a)	Capillary water	(b)	Gravitational water	
	(c)	Pellicular water	(d)	Hygroscopic water	
10.	. In ar	n underground profile, the zone of aeration doe	es not	include	
		Soil water		Capillary water	
	(c)	Ground water	` '	Runoff	
11.	Cap	acity inflow ratio for a storage reservoir is def	ined a	as	
		reservoir capacity		reservoir capacity	
	(a)	average annual flood inflow	(b)	average annual sediment inflow	
		dead storage capacity of the reservoir		·	
	(c)	average annual flood inflow	(d)	dead storage capacity of the reservoir average annual sediment deposited	
10	0.4			average annuai seaimeni aeposiiea	
12.		otolidine test is used for the determination of	4.		
	` '	Residual Chlorine	(b)	Dissolved Oxygen	
	` ′	Biochemical Oxygen Demand	(d)	Chloride Ion	
13.		e total hardness of water is greater than its total	alkal	-	
	` ′	Total Hardness	(b)	Total Alkalinity	
	(c)	Non-carbonate hardness	(d)	Bicarbonate hardness	
14.	The	ratio of 5-day BOD to ultimate BOD is about			
	(a)	1/3	(b)	1/4	
	(c)	2/3	(d)	1/2	
15.	The	settling velocity of a particle in a sedimentation	ı tank	is dependent on:	
	(a)	Depth of the tank	(b)	Surface area of the tank	
	(c)	Both the depth and surface area of the tank	(d)	None of the above	
16.		ulate the Sludge Volume Index (in ml/gm) if 1 hs 800 mg?	00 m	of sludge is collected in 30 mins on drying	
	(a)	125	(b)	8	
	(c)	0.008	(d)	0.125	
17.	Whi	ch of the following wastewater treatment proc	esses	is an attached growth process?	
		Oxidation Pond		Imhofftank	
	(c)	Rotating Biological Contactor	(d)	Activated Sludge process	
18.	The	percentage of Chlorine in fresh bleaching pow	der is	s about	
		20 – 25 %	(d)	30 – 35 % 40 – 45 %	
19.	Turb	ines are characterized by different types of effi			
	as η	$= \frac{Power\ at\ the\ shaft\ of\ the\ turbine}{Power\ delivered\ by\ water\ to\ the\ runner}.\ Wh$	ich ar	mong the following efficiencies is calculated	
	using	the given formula?			
	(a)	Hydraulic efficiency	(b)	Mechanical efficiency	
	(c)	Volumetric efficiency	(d)	Overall efficiency	

		- 4 -			
20.	On an indicator diagram of a reciprocating p	ump,			
	(a) Pressure head is taken as abscissa and	stroke length as ordinate.			
	(b) Pressure head is taken as ordinate and stroke length as abscissa.				
	(c) Both pressure head and stroke length	are taken as abscissa.			
	(d) Both pressure head and abscissa are to	aken as ordinate.			
21.	Specific speed of a turbine is defined as the	speed of the turbine which			
	(a) produces unit power at unit head.	(b) produces unit horsepower at unit discharge.			
	(c) delivers unit discharge at unit head.	(d) delivers unit discharge at unit power.			
22.	• •	rifugal pump are shown below in Figure, curve A is for			
	A C				
	' /				
	—→ Discharge(Q)				
	(a) Head	(b) Efficiency			
	(c) Power	(d) Time			
23.	The method of growing crops on ridges, rur	ning on the side of water ditches is known as			
	(a) Flood irrigation.	(b) Furrow irrigation.			
	(c) Check irrigation.	(d) Sprinkle irrigation.			
24		r at an average interval of about 10 days, and the crop			
24	period for rice is 120 days, find out the delt	a for rice.			
	(a) 100 cm	(b) 120 cm			
	(c) 12 cm	(d) 1.0 cm			
25	. Find the delta for a crop when its duty is 864	hectares/cumec on the field, the base period of this crop			
	is 120 days.				
	(a) 1.2 cm	(b) 12 cm			
	(c) 120 cm	(d) 1200 cm			
26	. The only irrigation module, which is not an	orifice type but is of weir type is			
	(a) Kennedy's gauge outlet	(b) open flume outlet			
	(c) pipe outlet	(d) adjustable proportional module.			
27	. Multiple arch dams is an example of				
	(a) arch dams.	(b) buttress dams.			
	(c) shell-arch dams.	(d) earth dam.			

28. Presence of tail water in a gravity dam

(c) shell-arch dams.

- (a) increases the principal stress and decreases the shear stress.
- (b) increases the principal stress and increases the shear stress.
- (c) decreases the principal stress and increases the shear stress.
- (d) decreases the principal stress and decreases the shear stress.

29.	When is a fluid called turbulent?	
	(a) Reynolds number is zero	(b) Reynolds number is greater than 2000
	(c) Reynolds number is greater than 100	(d) Reynolds number is smaller than 2000
30.	Open channel flow takes place	
	(a) In the pump	(b) Within a cylindrical depth
	(c) On a free surface	(d) In the pipe
31.	Which property of the fluid accounts for the	major losses in pipes?
	(a) pressure	(b) force
	(c) specific gravity	(d) viscosity
32.	When a body is totally or partially immerse	d in a fluid, it is buoyed up by a force equal to
	(a) weight of the body and fluild displace	
	(b) difference of weights of the fluid disp	laced and that of the body
	(c) sum of weights of the fluid displaced	and that of the body
	(d) weight of the fluid displaced by the bo	ody
33.	The phenomenon occuring in an open chang	nel when a rapidly flowing stream abruptly changes to a
	slowly flowing stream causing a distinct rise	of liquid surface, is
	(a) hydraulic jump	(b) critical discharge
	(c) water hammer	(d) critical velocity
34.	Which is not a form of precipitation?	
	(a) Water vapour	(b) Rain
	(c) Snow	(d) Hail
35.	Which of the following is not an example of	artificial aquifer recharge?
	(a) Sprinklers	(b) Injection wells
	(c) Percolation tanks	(d) Subsurface dykes
36.	The following figure depicts runoff hydrogr	aph of a river. What does the line "ab" represent?
	•	
	T .	
	DISCHARGE	
	HYDROGRAPH	
	ab	•
	TIME	
	(a) Assumed ground water inflow	(b) Assumed surface runoff
	(c) Assumed river discharge	(d) Assumed precipitation over river
37		he depth of rainfall is 30 cm then what will be the rainfall
31.	intensity in cm / hr?	u-p 0
	(a) 10	(b) 20
	(c) 60	(d) 100
38.	` '	rring in any one year if the return period of the storm is 20
20.	years?	
	(a) 0.05	(b) 1.05
	(c) 2.05	(d) 3.05

39.	Bioc	Biochemical Oxygen Demand (B.O.D.) of safe drinking water must be					
	(a)	five	(b)	nil			
	(c)	ten	(d)	six			
40.		average daily consumption of Aizawl city is 1 y demand will be	05 m	3, the maximum daily consumption on peak			
	` '	$1.7 \times 10^5 \mathrm{m}^3$	(b)	$9.7 \times 10^5 \text{m}^3$			
	(c)	$3.7 \times 10^5 \mathrm{m}^3$	(d)	$2.7 \times 10^5 \mathrm{m}^3$			
41.	Disin	nfection of drinking water, is done to remove					
	(a)	color	(b)	pH			
	(c)	odour	(d)	bacterias			
42.	Diffe	rential manometers are used to measure					
	(a)	atmospheric pressure	(b)	difference in pressure at two points			
	(c)	air temperature	(d)	atmospheric temperature			
43.	The f	luid coming into the centrifugal pump is accele	erated	l by			
	(a)	nozzle	(b)	impeller			
	(c)	throat	(d)	valve			
44.	When	n a canal and a drainage approach each other a	at the	same level, the structure so provided, is			
	(a)	a level crossing	(b)	inlet and outlet.			
	(c)	a syphon	(d)	an aqueduct			
45.	When	n a canal is carried over a natural drainage, the	e stru	cture provided, is known as			
	(a)	syphon	(b)	aqueduct			
	(c)	super passage	(d)	syphon-aqueduct.			
46.		annel designed by Lacey's theory has a mear aulic mean radius will be	ı velo	ocity of 1 m/s. The silt factor is unity. The			
	(a)	1.5 cm	(b)	0.5 cm			
	(c)	2.5 cm	(d)	3.5 cm			
47.		For the design of major hydraulic structures on the canals, the method generally preferred to, it based on					
	(a)	The relaxation method	(b)	Electrical analogy method			
	(c)	Power design method	(d)	Khosla's method of independent variables.			
48.	The in	ntensity of irrigation means					
	(a)	percentage of culturable commanded area to	be irr	igated annually			
	(b)	percentage of gross commanded area to be in	rigate	ed annually			
	(c)	percentage of the mean of culturable comma irrigated annually	andec	d area and the gross commanded area to be			
	(d)	total depth of water supplied by the number of	of wat	terings.			
49.		irrigation efficiency is 80%, conveyance losses the depth of water required at the canal outlet,		20% and the actual depth of watering is 16			
	(a)	5 cm	(b)	15 cm			
	(c)	25 cm	(d)	35 cm			
50.	Buck	ets and blades used in a turbine are used to					
	` '	Switch off the turbine	(b)	To regulate the wind speed			
	(c)	Alter the direction of water	(d)	To regulate the temperature			

SECTION - B (Short answer type question) (100 Marks)

All questions carry equal marks of **5** each.

This Section should be answered only on the <u>Answer Sheet</u> provided.

- 1. The capillary rise in the glass tube is not to exceed 0.2 mm of water. Determine its minimum size. Given that the surface tension for water in contact with air = 0.0725 N/m.
- 2. What is a manometer? Describe at least two types of manometers with necessary sketches.
- 3. Make a neat sketch of a flood hydrograph and mark the following elements: (i) Rising limb, (ii) peak flow, (iii) falling limb, (iv) base flow, (v) lag time and peak time.
- **4.** Explain the concept of Breakpoint chlorination with a neat sketch.
- 5. Briefly explain the four different types of particle settling. Explain them with relevant examples from water/wastewater treatment.
- 6. Five pipes, AB, BC, CD, DE, and EF of respective lengths, 20m, 25m, 20m, 25m, and 30m are connected in series. Find the equivalent diameter of a single pipe replacing these pipes using the equivalent pipe method. (Diameters of AB = 20 cm; BC = 25 cm; CD = 30 cm; DE = 20 cm; EF = 15 cm).
- 7. A Pelton wheel has a mean bucket speed of 10 m/s with a jet of water flowing at the rate of 700 L/s under a head of 30 m. The buckets deflect the jet through an angle of 160°. Calculate the power given by water to the runner and the hydraulic efficiency of the turbine. Assume co-efficient of velocity as 0.98.
- 8. Explain the following terms in regard to centrifugal pump with necessary mathematical expressions wherever necessary: (i) suction head, (ii) static head, (iii) delivery head, (iv) Manometric head, (v) efficiencies of a centrifugal pump.
- 9. Explain at least two types of Surge tanks in detail. What are the factors influencing the choice of surge tank?
- 10. What are the two major crop seasons in India? Explain in detail. Give at least FIVE examples of crops for each season.
- 11. The discharge in a rectangular channel of width 6 m with Manning's n = 0.012 m^{-1/3}, S is 24 m³ s⁻¹. If the streamwise slope is 1 in 200 find:
 - (a) the normal depth;
 - (b) the Froude number at the normal depth;
 - (c) the critical depth.

State whether the normal flow is subcritical or supercritical.

- 12. Explain the Characteristic Curves of Centrifugal Pump with suitable diagram.
- 13. Explain the working principle of a Reciprocating Pump and its classification with suitable diagram.
- **14.** Following information regarding isohytes was obtained from the analysis of a storm. Determine the mean precipitation.

Isohyets interval (mm)	50-60	60-70	70-80	80-90	90-100	100-110
Area (km²)	15	65	110	95	125	55

15. A flood of a certain magnitude has a return period of 40 years.

Determine:

- (a) the probability of exceedance,
- (b) probability of the flood of magnitude equal to or greater than the given magnitude occurring.
 - (i) at least once in 10 successive years
 - (ii) two times in 10 successive years, and
 - (iii) once in 10 successive years.
- 16. Write a short note on water treatment process and various methods of waste water treatment.
- 17. Write short note on Net Irrigation Requirement and Irrigation Scheduling.
- 18. Explain the objectives and methods of River Training Works with suitable diagram.
- 19. A lined canal (n = 0.015) laid at a slope of 1 in 1600 is required to carry a discharge of 25 m³/s. The side slopes of the canal are to be kept at 1.25 H : 1 V. Determine the depth of flow.
- 20. Explain Stratification of a lake or reservoir based on temperature with suitable diagram.

* * * * * *