MIZORAM PUBLIC SERVICE COMMISSION

TECHNICAL COMPETITIVE EXAMINATIONS FOR JUNIOR GRADE OF MIZORAM ENGINEERING SERVICE (COMBINED) under Various Department,

GOVERNMENT OF MIZORAM, JULY-2024

ELECTRONICS & COMMUNICATION ENGINEERING PAPER-III

Time Allowed: 3 hours FM: 200

SECTION - A (Multiple Choice questions) (100 Marks)

All questions carry equal mark of 2 each. Attempt all questions.

This Section should be answered only on the **OMR Response Sheet** provided.

1.	In a typical satellite communication system, which of the following could be the up-link and dow link frequencies respectively?			
	(a)	40 GHz and 60 GHz	(b)	60 GHz and 40 GHz
	(c)	6 GHz and 4 GHz	(d)	4 GHz and 6 GHz
2.		spectrum of a band-pass signal spans from 2 ly from the sampled values when the sampling		-
	(a)	20 kHz	(b)	40 kHz
	(c)	50 kHz	(d)	60 kHz
3.	. A balanced modulator is used in the generation of which of the following?			of the following?
	(a)	DSB-SC signal	(b)	FM signal
	(c)	PM signal	(d)	PAM signal
4.	Duri	ng power measurement the output power measurement and power measur	ared '	was -90 dBm. What is the measured power?
	(a)	1 pW	(b)	1 mW
	(c)	1 W	(d)	10 W
5.	For ta	aking antenna far field pattern, what must be the nas?	e dis	tance R between transmitting and receiving
	()	$p > 2D^2$	(1.)	$p \sim 4D^2\lambda^2$

- (a) $R > \frac{2D^2}{\lambda}$ (b) $R > \frac{4D^2\lambda}{3}$
- (c) $R > \frac{D^2}{2\lambda}$ (d) $R > \frac{2D^2}{\lambda^2}$
- 6. Why does an FM radio station perform better than an AM station radiating the same total power?
 - (a) FM is immune to noise
 - (b) AM has only two sidebands while FM has more
 - (c) FM uses larger bandwidth for large modulation depth
 - (d) Capture effect appears in FM

		- 2 -		
7.	Which one of the following blocks is not common in both AM and FM receiver?			
	(a)	RF amplifier	(b)	Mixer
	(c)	Slope Detector	(d)	IF amplifier
8.	An analog signal has significant spectral components from 1 kHz to 5 kHz. What is the Nyqui sampling rate for this signal?			
	(a)	4 k samples/s	(b)	5 k samples/s
	(c)	8 k samples/s	(d)	10 k samples/s
9.	Whic	ch one of the following is represented by $v(t)$ =	= 5 [c	$\cos(10^6 \pi t) - \sin(10^3 \pi t) \times (10^6 \pi t)$]?
	(a)	SSB under sideband signal	(b)	DSB suppressed carrier signal
	(c)	AM signal	(d)	Narrow band FM signal
10.	Whic	ch of the following pulse modulations is analog	•	
	(a)	PCM	(b)	Differential PCM
	(c)	PWM	(d)	Delta
11.	. A 8 kHz communication channel has an SNR of 30 dB. If the channel bandwidth is doubled, keepi the signal power constant, the SNR for the modified channel will be -			
	(a)	27 dB	(b)	30 dB
	(c)	33 dB	(d)	60 dB
12.		0-bit PCM system, the signal to quantization ased by 2, then the signal to quantization noise		
		increase by 6 dB		decrease by 6 dB

- (d) decrease by 12 dB (c) increase by 12 dB 13. The main disadvantage of using coaxial cable for microwave signals is its -
 - (a) low selectivity

(b) low distortion

(c) high attenuation

(d) high sensitivity

14. For directional coupler shown below, a coupling factor in dB is -

(a) $10 \log_{10} (P_1/P_4)$

(b) $10 \log_{10} (P_1/P_2)$

(c) $10 \log_{10} (P_2/P_4)$

- (d) $10 \log_{10} (P_1/P_3)$
- 15. Consider a transmission line of length 37.5 cm, which is terminated into zero resistance. This line is being excited by a source of 1 GHz which has an internal impedance of $50\,\Omega$. What is the input impedance of the line as seen by the source?
 - (a) Zero

(b) 50Ω

(c) 100Ω

(d) Infinite

16.	Which device can detect the presence of both forward and backward waves in a waveguide?			
	(a)	Filter	(b)	Directional coupler
	(c)	Detector	(d)	Magic T
17.	17. If the reflection coefficient is 1/5, what is the corresponding VSWR?			
	(a)	3/2	(b)	2/3
	(c)	5/2	(d)	2/5
18.		neasuring the VSWR values in the main and anc mine its -	illary	waveguides of a directional coupler, we can
	(a)	phase co-relation and efficiency	(b)	frequency shift and phase variations
	(c)	attenuation and radiation efficiency	(d)	directivity and coupling factor
19.		ann diode, out of its various modes of operation nence, can be used at high frequency and for ve		
	(a)	Transit time mode	(b)	Quenched domain mode
	(c)	LSA mode	(d)	Delay domain mode
20.	Ifah	eight of the waveguide is halved, its cut-off wa	vele	ngth will -
	(a)	be halved	(b)	be doubled
	(c)	remain unchanged	(d)	be one-fourth of the previous value
21.		variation of resistance of an element with absciple of operation of a/an -	sorpt	ion of microwave power is the underlying
	(a)	Attenuator	(b)	Bolometer
	(c)	Wave filter .	(d)	Phase shifter
22.		crowave communication links, path-diversity and in the path due to -	and fi	requency-diversity are adopted to overcome
	(a)	polarization shifting	(b)	rain attenuation
	(c)	phase lagging	(d)	fog accumulation
23.	At m	icrowave frequencies, a varactor diode may ne	ot be	useful -
	(a)	for electronic tuning	(b)	for frequency multiplication
	(c)	as an oscillator	(d)	as a parametric amplifier
24.		e peak power of pulsed microwave system is 1 will be -	04 W	and average power is 800 W, then the duty
	(a)	0.08%	(b)	0.8%
	(c)	8%	(d)	80%
25.		ch of the following instructions copies a byte ess given in the instruction?	of da	ata into the accumulator from the memory
	(a)	LDA address	(b)	LDAX B
	(c)	LHLD address	(d)	STA address
26.	The 8	3085 has two registers known as primary data	poin	ters. These are registers -
	(a)	B and C	(b)	D and E
	(c)	H and L	(d)	C and D
27.	Wha	t is the address space of 8086 CPU?		
	(a)	1 Mbyte	(b)	256 kbyte
	(c)	10 Mbyte	(d)	64 kbyte

28.	If 8085 adds 87H and 79H, then -			
	(a)	both CARRY and ZERO flags will be se	et to ()
	(b)	CARRY flag will be set to 0, ZERO flag	to 1	
	(c)	CARRY flag will be set to 1, ZERO flag	to 0	
	(d)	both CARRY and ZERO flags will be se	et to 1	l
29.	A memory system of size 32 kbyte is required to be designed using memory chips which have address lines and 4 data lines each. What is the number of such chips required to design the mem system?			
	(a)	4		(b) 8
	(c)	16		(d) 32
30.	In 80	985, if the clock frequency is 5 MHz, the time	me re	equired to execute an instruction of 18T states is-
		$3.0\mu s$		(b) $3.6 \mu s$
	(c)	$4.0\mu s$		(d) $6.0 \mu s$
31.	Whi	ch one of the following interrupts is both le	vel a	
		RDT 7.5	7 V C1 U	(b) RST 5.5
	` ′	TRAP		(d) INTR
32	` ′		duo e	
34.		$3)_{base4} + (1.2)_{base4} = (y)_{base4}$; what is the value 10.1	iiue (
		10.2		(b) 10.01 (d) 1.02
22	` '			(d) 1.02
33.		first machine cycle of an instruction is alw a memory read cycle	ays -	(h) a fatah ayala
		an IN/OUT read cycle		(b) a fetch cycle
2.4		·		(d) a memory write cycle
34.		assembler, which one of the following is a	requi	*
	` ′	Addresses		(b) Values
	` ′	Registers	•	(d) Storage
35.		ch of the following correctly declares a po	inter	-
	` ′	int *P[20];		(b) int (*P)[20];
	, ,	int *(P[20]);		(d) int P*[20];
36.	. The different classes of formal parameters used in PASCAL are -			PASCAL are -
		value and variable parameters		· · · · · · · · · · · · · · · · · · ·
		procedure and function parameters		
		value, variable, procedure and function p		neters
	` '	variable, procedure and function parame		
37.		signal to quantization noise ratio in an n-b		•
		depends upon the sampling frequency employ	yed	• • • • • • • • • • • • • • • • • • • •
	(c)	increases with increasing value of 'n'		(d) decreases with the increasing value of 'n'
38.	In de	lta modulation, the slope overload distort	tion o	can be reduced by -
	(a)	decreasing the step size		(b) decreasing the granular noise
	(c)	decreasing the sampling noise		(d) increasing the step size
39.	Satel	lite communication links are preferred over	er sul	omarine cables because
	(a)	they involve lesser costs	(b)	they are faster
	(c)	of their multiple access capability	(d)	they offer a wide range of communication services

40.	Consider an FM wave is $\cos \left[2\pi f_{\rm c} t + \beta_1 \sin 2\pi f_1 t + \beta_2 \sin 2\pi f_2 t\right]$. The maximum deviation of the instantaneous frequency from the carrier frequency $f_{\rm c}$ is -				
	(a)	$\beta_1 f_1 + \beta_2 f_2$	(b)	$\beta_1 f_2 + \beta_2 f_1$	
	(c)	$\beta_1 + \beta_2$	(d)	$f_1 + f_2$	
41.	A 10 MHz carrier is frequency modulated by a sinusoidal signal of 500 Hz, the maximum frequency deviation being 50 KHz. The bandwidth required as given by the Carson's rule is -				
	` '	500 Hz	` ,	500 KHz	
	(c)	10 MHz	(d)	101 KHz	
42.	There	There are three methods for the microwave frequency measurement. They are -			
	` '	(a) Slotted line technique, Wave meter technique and Electronic technique			
	` '	Bolometric technique, Slotted line technique		•	
	. ,	Calorimeter-Wattmeter technique, Wave mete			
	` '	Bolometric technique, Calorimeter-Wattmete	r tech	inique and Electrical technique	
43.		waves travel as -			
		Sky waves	` /	Ground waves	
	` .	Space waves	(d)	Surface waves	
44.	• -	eal efficiency of TWT amplifier is -			
	` ,	60 to 80 %	` ,	30 to 70 %	
	` ,	40 to 50 %	(d)	10 to 40 %	
45.		Clystron tube operates on which principle?	4.		
	` .	Velocity modulation	` '	Current density modulation	
	(c)	Amplitude modulation	(d)	Frequency modulation	
46.		skin depth (δ) is equal to -			
	` '	$(2/\omega\mu a)^{1/2}$		$(2 \omega \mu a)^{1/2}$	
	(c)	$(2/\omega\mu a)^{1/3}$	(d)	$(2 \omega \mu a)^{1/3}$	
47.	I/O n	napped systems identify their input/output devi			
	` '	8-bit instruction	` '	8-bit buffer number	
	` ,	16-bit port number	` ,	8-bit port number	
48.	opera	gister in the microprocessor that keeps track of ation is the -			
	` '	stack pointer		program counter	
	` '	instruction pointer	` '	accumulator	
49.	The measured value of the positive RF peak amplitude levels of an AM envelope on an ordinary oscilloscope rise to a maximum value of 12 V and drop to a minimum value of 4 V. The modulation index is -				
	(a)	3	(b)	1/3	
	(c)	1/4	(d)	1/2	
50.	8085	has five flags they are designated as -			
	(a)	Z, CY, S, P and AC	(b)	CY, D, Y, S and P	
	(c)	CY, AC, D, E, and P	(d)	S, P, D, E and Y	

SECTION - B (Short answer type question) (100 Marks)

All questions carry equal marks of 5 each.

This Section should be answered only on the Answer Sheet provided.

- 1. Draw the time domain representation of a voice signal, a carrier signal, and an amplitude modulated (AM) signal.
- 2. For a medium of transmission having a bandwidth of 100 kHz, what is the maximum number of channels we can have for signals modulated with audio signals of effective bandwidth of 3 kHz, provided the first carrier frequency is taken to be 40 KHz?
- 3. Derive the expression for power efficiency of an AM wave. What is the maximum efficiency obtainable at critical modulation?
- **4.** An audio signal is transmitted using PCM system with a sampling rate of 40 kHz and 14 bits per sample. Calculate the transmission data rate of the system.
- 5. A load with an impedance of $40 + j30\Omega$ is to be matched to a 100Ω lossless line with a shorted stub. Determine the required stub admittance and distance between the stub and the load.
- 6. Determine the wave impedance of TE and TM wave in a rectangular waveguide.
- 7. What are pseudo-instructions? Mention three pseudo-instructions used in assembly language program.
- 8. Write short notes on RISC and CISC.
- **9.** What are machine language and assembly language? Write an assembly language program to subtract two numbers.
- 10. Sketch the refraction index profile and ray transmission in single mode step-index fibre.
- 11. An earth station with a transmitter power of 120W, a frequency of 6 GHz and an antenna gain of 42 dB transmits to a satellite repeater. The receiving antenna on the satellite has a gain of 31 dB. If the satellite is in geosynchronous orbit of 35900 km above earth, what is the receiving power in dBm?
- 12. Determine the internal noise power (P_n) of a microwave amplifier operating with a bandwidth of 500 MHz and a specified noise figure of 2.5 dB.
- 13. Consider a source with three messages having symbol probabilities 0.5, 0.4 and 0.1, respectively. Obtain Shannon-Fano code and calculate its efficiency.
- 14. A transmission line of 72Ω is connected to a 100Ω load. Calculate (a) standing wave ratio due to this mismatch, and (b) ratio of the reflected and the incident powers at the load.
- 15. In a binary PCM, if 0 occurs with probability ¼ and 1 occurs with probability equals to ¾, then calculate the amount of information carried by each bit.
- 16. Explain how frequency modulation may be obtained from a phase modulator.
- 17. Mention the two independent functional units in the 8086 microprocessor and explain their basic functions.
- 18. State the functions of the following pins in 8085 microprocessor: (a) READY, (b) ALE, (c) HOLD, and (d) TRAP.
- 19. Distinguish between (a) Call by value and call by reference, and (b) clock cycle, machine cycle and instruction cycle.
- 20. Draw the timing diagram for instruction STA 4000H which is stored at address 2000H.

* * * * * *