MIZORAM PUBLIC SERVICE COMMISSION

TECHNICAL COMPETITIVE EXAMINATIONS FOR JUNIOR GRADE OF MIZORAM ENGINEERING SERVICE (COMBINED) UNDER VARIOUS DEPARTMENT,

GOVERNMENT OF MIZORAM, JULY-2024

ELECTRONICS & COMMUNICATION ENGINEERING

			· -
	PAPER-	II	•
Time Allowed:	3 hours		FM: 200
	SECTION - A (Multiple Choice	ques	stions) (100 Marks)
	All questions carry equal mark of 2 e	ach.	Attempt all questions.
This	Section should be answered only on th	e <u>O</u> M	MR Response Sheet provided.
	with lowest cut-off frequency for an electrong parallel plates of infinite extent is-	nagr	netic wave propagating between two perfectly
(a) TE_{10}	0	(b)	TM_{10}
(c) TM_0	01	(d)	TEM
2. Which of t	the following equations result from the circ	cuita	l form of Ampere's law?
(a) $\nabla \times$	Ot	` /	$\nabla \cdot B = 0$
(c) ∇· <i>I</i>	$D = \rho$	(d)	$\nabla \times H = J + \frac{\partial D}{\partial t}$
3. A line char	racteristic impedance 50Ω is terminated a	it one	e end by $+j50\Omega$. The VSWR on the line is-
(a) 1		(b)	0
(c) ∞		(d)	\dot{J}
4. What will	be the equipotential surfaces for a pair of	equa	al and opposite line charges?
(a) Sphe	eres	(b)	Concentric cylinders
(c) Non	-concentric cylinder	(d)	Elliptical
	wave propagating in free space or two conjugations in the phase velocity, v_p , the ground propagation is $v_p = v_p + v_p$.		uctor transmission line, what must be the elocity, v_g , and speed of light, c ?
(a) $v_p >$	$c > v_g$	(b)	$v_p < c < v_g$
(c) $v_p =$	$c = c = v_g$	(d)	$v_p < v_g < c$
6. In a charge	e-free space, the Poisson's equation result	s in v	which of the following?
(a) Cont	tinuity equation	(b)	Maxwell's equation
(c) Lapl	lace equation	(d)	Displacement equation

7. An air-filled parallel plate capacitor is made of square plates, each 10cm × 10cm and has a capacitance

(b) C/8

(d) C/32

C. If the plates are reduced to 2.5cm × 2.5cm, what would be the new capacitance?

(a) C/4

(c) C/16

8.	For an electromagnetic wave incident on a conducting medium, the depth of penetration-			
	(a)	is directly proportional to the attenuation cons	stant.	
	(b)	is inversely proportional to the attenuation cor	nstan	t.
	(c)	has a logarithmic relationship with the attenuar	tion o	constant.
	(d)	is independent of the attenuation constant.		
9.	Cons.	ider a 565 PLL with $R_T = 10 \text{ k}\Omega$ and $C_T = 0$?	0.01	μ F. What is the output frequency of the
	(a)	10 kHz	(b)	5 kHz
	(c)	2.5 kHz	(d)	1.25 kHz
10.	CE co	onfiguration is the most preferred transistor co	nfigu	ration when used as switch, because-
		it requires only one power supply		
	(b)	it requires low voltage or current for operating	g the	switch
	(c)	it has small I_{CEO}		
	(d)	it gives large output		
11.	. A power supply has a full-load voltage of 24 V. What is its no-load voltage for 5% regulation (round to the nearest integer)?			
	(a)	6 V	(b)	12 V
	(c)	23 V	(d)	25 V
12.	Opera	ating point shift can occur in an amplifier due to	o wh	ich one of the following?
	_	Input frequency variation		Noise at the input
	(c)	Parasitic capacitances	(d)	Power supply fluctuation
13.		lass-B push-pull operation, the DC power dra		
	(a)	8 W	(b)	16 W
	(c)	22 W	(d)	28 W
14.		pinch-off voltage, $V_p = +6V$ for a <i>p-channel</i> h it will enter into saturation region?	FET	. If $V_{GS} = +2V$, what is the value of V_{DS} at
	(a)	-6V	` '	-4V
	(c)	+ 8V	(d)	+ 4V
15.	A tur	ned amplifier has a voltage gain of 100 and a b ase the bandwidth to 20 kHz. This can be achi	andv eved	vidth of 10 kHz at 500 kHz. It is required to by which one of the following ways?
	(a)	By doubling the gain	(b)	By doubling the resonant frequency
	(c)	By halving the Q of the coil	(d)	By halving the power supply voltage
16.	In a I	PLL, lock occurs when the-		
	(a)	input frequency and VCO frequency are the s	same	
	(b)	phase error is 180°		
	(c)	VCO frequency is double the input frequency	1	
	(d)	phase error is 90°		
17.	Whic	ch one of the following power amplifiers has the	max	imum efficiency?
		Class – A		Class – B
	(0)	Class – C	(d)	Class – AB

18. The complement of the expression $Y = ABC + AB\overline{C} + \overline{A}\overline{B}C + \overline{A}BC$ is-

(a)
$$(A+\overline{B})(A+\overline{C})$$

(b)
$$(\overline{A}+B)(A+C)$$

(c)
$$(A+\overline{B})(\overline{A}+C)$$

(d)
$$(\overline{A}+\overline{B})(A+\overline{C})$$

19. The hexadecimal representation of 657_8 is-

(a) 1AFH

(b) D78H

(c) D71H

(d) 32FH

20. A 10-bit A/D converter is used to digitize an analog signal in the 0 to 5 V range. The maximum peak to peak ripple voltage that can be allowed in the DC supply voltage is nearly

(a) 100 mV

(b) 50 mV

(c) 25 mV

(d) 5 mV

21. What is the minimized logical expression corresponding to the given Karnaugh Map?

yx				
wx	00	01	11	10
00			1	
01	1	1	1	
11		1	1	1
10		1		

(a) xz

(b) $\overline{w}x\overline{y} + \overline{w}yz + w\overline{y}z + wxy$

(c) $\overline{w}x\overline{y} + \overline{w}yz + w\overline{y}\overline{z} + wx\overline{y}$

(d) $xz + \overline{w}xz + \overline{w}x\overline{y} + wxy + w\overline{y}z$

22. A master slave configuration consists of two identical flip-flops connected in such a way that the output of the master is input to the slave. Which one of the following is correct?

- (a) Master is level triggered and slave is edge triggered
- (b) Master is edge triggered and slave is level triggered
- (c) Master is positive edge triggered and slave is negative edge triggered
- (d) Master is negative edge triggered and slave is positive edge triggered

23. The characteristic equation of the T-flip-flop is given by-

(a)
$$Q^+ = TQ + \overline{TQ}$$

(b)
$$Q^+ = \overline{T}Q + T\overline{Q}$$

(c)
$$Q^+ = TQ$$

(d)
$$Q^+ = T\overline{Q}$$

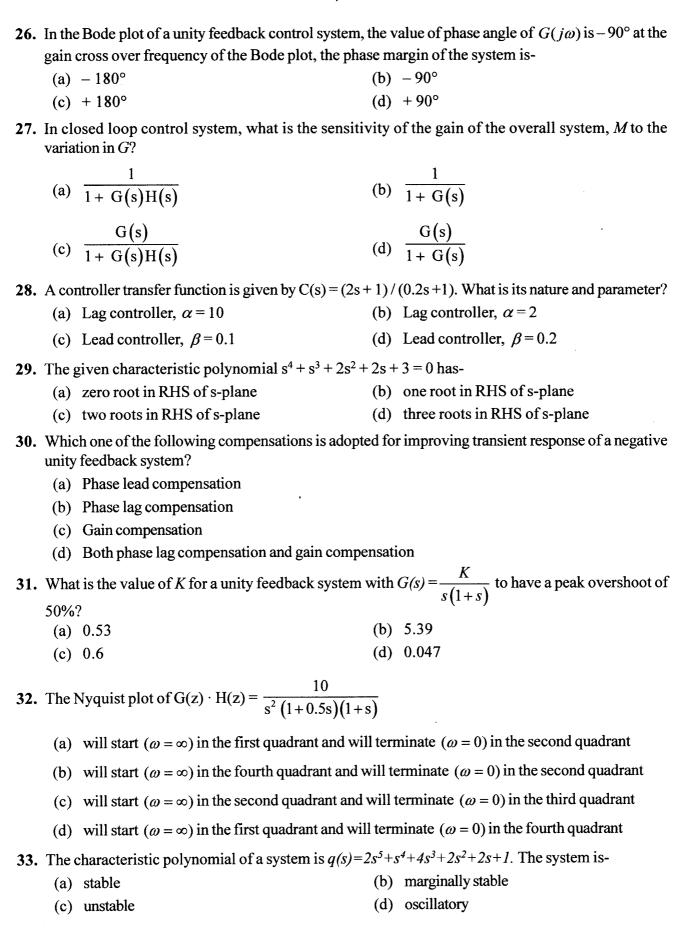
24. The Boolean functions can be expressed in canonical SOP (sum of products) and POS (product of sums) form. For the function $Y = A + \overline{B} \cdot C$, which are such two forms?

(a)
$$Y = \sum (1, 2, 6, 7)$$
 and $Y = \Pi (0, 2, 4)$

(b)
$$Y = \sum (1,4,5,6,7)$$
 and $Y = \prod (0,2,3)$

(c)
$$Y = \sum (1,2,5,6,7)$$
 and $Y = \Pi(0,1,3)$

(d)
$$Y = \sum (1,2,4,5,6,7)$$
 and $Y = \prod (0,2,3,4)$


25. If two counter, MOD_N counter and MOD_M counter are cascaded then the number of overall states of combined counter will be-

(a)
$$(M + N)$$
 states

(b)
$$(M-N)$$
 states

(c)
$$(M \times N)$$
 states

(d)
$$(M/N)$$
 states

		١	k(s+1)
34.	An open loop transfer function is given by $G(s)H(s)$) = - S	$\frac{1}{(s+2)(s^2+2s+2)}$. It has-
	(a) one zero at infinity	(b)	two zeroes at infinity
	(c) three zeroes at infinity	(d)	four zeroes at infinity
35.	A bulb in a staircase has two switches, one switch be first floor. The bulb can be turned ON and also contrespective of the state of the other switch. The logical an AND gate	an b	e turned OFF by any one of the switches
	(c) an XOR gate	` '	a NAND gate
26	Convert the following number system:	(-)	
30.	$(743)_8 = (?)_{10}$		
	$(743)_8$ $(17)_{10}$ (a) 483	(b)	871
	(c) 796	` '	377
37.	Memory of computer which is used to speed up the	` ′	
0	(a) BIOS		Cache Memory
	(c) RAM	(d)	ROM
38.	An R-S latch is a-		
	(a) combinational circuit	(b)	synchronous sequential circuit
	(c) one clock delay element	(d)	one bit memory element
39.	How many flip flops are required to build a binary	coun	ter circuit to count from 0 to 1023?
	(a) 7	(b)	
	(c) 16	(d)	25
40.	The number of comparators in a 4-bit flash ADC is	-	
	(a) 67	(b)	77
	(c) 15	(d)	11
41.	A common source amplifier has a voltage gain of-		
	(a) $g_{\rm m}r_{\rm s}/(1-g_{\rm m}r_{\rm s})$	(b)	$g_{\rm m}r_{\rm d}/(1-g_{\rm m}r_{\rm d})$
	(c) $g_m r_s$	(d)	$g_{m}^{}r_{d}^{}$
42.	An amplifier has an open loop gain of 1000 ± 10 . N	legat	tive feedback is provided such that the gair
	variation remains within 0.1 %. What is the amount	t of f	eedback β_F ?
	(a) 9/10	(b)	9/100
	(c) 9/1000	(d)	9/10000
43.	A half wave rectifier is used to supply 50 V DC to a	resis	tive load of 800Ω . The diode has resistance
	of 25 Ω . What is the required AC voltage?		
	(a) 20.2π	(b)	30.0π
	(c) 51.5π	(d)	63.3π
44.	An ideal Opamp is an ideal-		
	(a) voltage controlled current source	` ′	current controlled current source
	(c) voltage controlled voltage source	(d)	current controlled voltage source

45.	A con	mmon gate amplifier has
	()	1 . 1

- (a) high input resistance and high output resistance
- (b) low input resistance and high output resistance
- (c) low input resistance and low output resistance
- (d) high input resistance and low output resistance
- 46. If the line frequency is 50 Hz, the output frequency of the bridge rectifier is-
 - (a) 1 Hz

(b) 10 Hz

(c) 100 Hz

- (d) 1000 Hz
- 47. A plane wave travelling in a medium of $\varepsilon_r = 1$, $\mu_r = 1$ (free space) has an electric field intensity of $100(\pi)^{1/2}V/m$. Determine the total energy density of this magnetic field.
 - (a) 23.9 nJ/m^3

(b) 27.8 nJ/m^3

(c) 139 nJ/m^3

- (d) $239 \, \text{nJ/m}^3$
- **48.** A TEM wave impinges obliquely on a dielectric-dielectric boundary ($\varepsilon_{r1} = 2$, $\varepsilon_{r2} = 1$). The angle of incidence for total reflection is-
 - (a) 30°

(b) 45°

(c) 60°

(d) 90°

- 49. A dynamic RAM consists of-
 - (a) 3 transistors

(b) 1 transistor and 1 capacitor

(c) 2 transistors and 3 capacitors

- (d) 2 transistors
- **50.** A system has fourteen poles and two zeros. The slope of its highest frequency asymptote in its magnitude plot is-

(a) -340 dB/decade

(b) -240 dB/decade

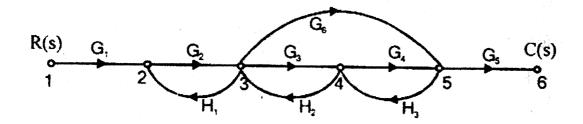
(c) -140 dB/decade

(d) -440 dB/decade

SECTION - B (Short answer type question) (100 Marks)

All questions carry equal marks of 5 each.

This Section should be answered only on the **Answer Sheet** provided.


- 1. For a good conductor, derive the expressions of attenuation constant, phase constant and the depth of penetration as functions of relevant parameters of the conductor.
- 2. Describe the working of non-inverting amplifier and inverting amplifier realized using Op-Amp.
- 3. Define Standing Wave Ratio (SWR) for a transmission line terminated by a resistive load.
- 4. Define gauge factor for a strain gauge and derive an expression for it.
- 5. Draw and explain the circuit diagram of a Colpitt's oscillator using transistor.
- **6.** Explain the race around condition in a JK flip-flop.
- 7. Design a logic circuit for detecting equality of two 2-bit binary numbers.
- 8. State and explain the terms gain margin and phase margin.
- 9. Design a Schmitt trigger using an Op-Amp.
- 10. Draw the circuit diagram for implementation of 2-input EX-OR using CMOS transistors.

- 11. A phase lead compensator has a transfer function: $G(s) = \frac{1+2s}{2(1+s)}$. Determine the maximum values of the phase lead and the frequency at which it occurs.
- 12. What is Priority Encoder? Design a Priority Encoder using NAND gate only.
- 13. Draw the circuit diagram of a Dual Slope A/D converter and explain the operation of the conversion process. Prove that in Dual Slope A/D converter the output of the counter is proportional to the analog voltage V_a.
- 14. With a neat circuit diagram, explain the working principle of RC coupled multi stage transistor amplifier.
- 15. A two stage RC coupled transistor amplifier is having the following parameters:

$$\begin{split} R_3 &= R_7 = 12 \text{ K}\,\Omega\,,\, R_4 = R_8 = 3.9 \text{ K}\,\Omega\,,\, R_1 = R_5 = 120 \text{ K}\,\Omega\,,\, R_2 = R_6 = 39 \text{ K}\,\Omega\,,\, C_1 = \dot{C}_3 = 6.8 \text{ }\mu\text{F}\,,\, C_2 = C_4 = 150 \text{ }\mu\text{F}\,,\, C_5 = 0.12 \text{ }\mu\text{F}\,,\, V_{cc} = 24 \text{ V},\, R_L = 120 \text{ K}\,\Omega\,,\,\, \beta = 100,\, h_{ie} = 2 \text{ K}\,\Omega\,. \end{split}$$

Determine Z_{in} , Z_{out} , and the overall voltage gain.

- 16. With a neat circuit diagram and wave form, explain the operation of a square wave generator.
- 17. The signal flow graph for a feedback control system is shown below. Determine the closed loop transfer function C(s)/R(s).

- 18. Explain the fundamental differences between frequency response and time response analysis in the context of control systems. Define Static error constant.
- 19. Define open-loop and closed loop control systems with an example. What is the purpose of a transfer function in control system analysis?
- 20. Write down four Maxwell's equation in free space (linear homogeneous isotropic medium).

* * * * * *