MIZORAM PUBLIC SERVICE COMMISSION

DEPARTMENTAL EXAMINATIONS FOR JUNIOR GRADE OF M.E.S. (AE/SDO) UNDER IRRIGATION & WATER RESOURCES DEPARTMENT, GOVERNMENT OF MIZORAM, DECEMBER, 2023.

ENGINEERING PAPER - I

(Common for Civil and Agricultural Engineers)

Time Allowed: 3 hours

FM:100 PM:40

Marks for each question is indicated against it.

Attempt all questions. (Scientific Calculator allowed)

PART - A (50 MARKS)

					4	
1.	Cho	ose th	e correct answer:		$(25 \times 1 = 25)$	
	(1)	The most suitable equipment for well drilling in hard rock areas is				
		(a)	Cable tool drilling	(b)	Direct rotary drilling	
			Down-the-hole air rotary drilling		Reverse rotary drilling	
(2) When the head against which the positive displacement pump operate is characteristic displaced by it					ent pump operate is changed, the volume	
		(a)	remains constant	(b)	varies directly as the head	
		(c)	varies as the square of the head		varies as the cube of the head	
	(3)	Whe	n the speed of a centrifugal pump is change	ed, di	scharge	
		(a)	remains constant	(b)	varies directly as speed	
		(c)	varies as the square of the speed	(d)	varies as the cube of the speed	
	(4)	The r	most suitable irrigation pump to lift water fr	om S	tream/canal with lift less than 25 m is	
		(a)	Jet pump	(b)	submersible pump	
		(c)	centrifugal pump	(d)	propeller pump	
	(5) If the RPM of a pump are increased by 50%, the required BHP will increase by					
		(a)	50 percent	(b)	175 times	
		(c)	225 times	(d)	338 times	
(6) The main cause for overloading of the motor/engine is					s	
		(a)	High discharge head	(b)	damaged impeller	
		(c)	low discharge head	(d)	too high suction lift	
	(7)	The i	ndirect benefits from the irrigation-based p	rojec	ts on wells and pumps include	
		(a)	increase in actual crop area	(b)	increase in value of the crop	
		(c)	improving the quality of the crops	(d)	providing off-season vegetables	
	(8)	Drain	spacing is directly proportional to			
		(a)	Type of soil	(b)	type of Gravel material	
		(c)	drain discharge	(d)	None of the above	

(9)	Darc	Darcy's law is valid only when						
	(a)	flow is laminar	(b)	flow is turbulent				
	(c)	flow is transitional	(d)	flow has Reynolds number > 4000				
(10)	The	The construction of drain is always started at the						
	(a)	out let and progress upstream	(b)	Upstream and progress out let				
	(c)	Last contour of field	(d)	First contour of field				
(11)	Drainage removes onlywater from the soil							
	(a)	gravitational	(b)	held water				
	(c)	capillary	(d)	pressurized water				
(12)	The relation between transmissibility (T) and permeability (K) for an aquifer of depth d is							
	(a)	K=T d	(b)	T=K d				
	(c)	T=K log d	(d)	T=ln(K d)				
(13)	Available water in a soil refers to the water that is							
	(a)	Drained	(b)	Conserved				
	(c)	used by plants	(d)	lost due to percolation				
(14)	For a	For a circulatory watershed, the circularity ratio is						
	(a)	0	(b)	p				
	(c)	∞	(d)	1				
(15)	A rai	nfall of 15mm over a watershed produced	off of 6 mm, the balance 9mm is					
	(a)	Evaporation loss	(b)	depression storage				
	(c)	Total abstraction	(d)	interception loss				
(16)	The	peak of a unit hydrograph is the discharge p	er un	it of				
	(a)	Total rainfall	(b)	watershed area				
	(c)	rainfall duration	(d)	rainfall excess				
(17)	An aquifer is a geologic formation that							
	(a)	Contain water but does not transmit	(b)	does not contain water				
	(c)	Contain water and also transmit	(d)	is a rock outcrop				
(18)	The diameter of the intake pipe of a lift scheme flowing partially full is computed using							
	(a)	Darcy Weisbach formula	(b)	William Hazel formula				
	(c)	Manning's formula	(d)	Chezy's formula				
(19)	The depth of flow over a sharp crested rectangular weir should not be more than about							
	(a)	Half the crest width	(b)	two-third of the crest width				
		three-fourth of the crest width	` /	the width of the weir				
(20)	The most suitable device for measuring large flows in earth channels in a canal water distribution							
	syste		(1.)	0 1 W				
	` '	In-built Parshall flume	(b)					
		Broad-crested rectangular weir		Truncated flume				
(21)	2015 White property where the property was a second of the property of the pro							
		001 to 005 %		005 to 010 %				
	(c)	010 to 020 %	(d)	010 to 050 %				

- (22) In ground water flows, Darcy's law is generally applied because
 - (a) Ground water flow cannot be estimated correctly by other existing formula
 - (b) Ground water flow, being very slow, thus has very less Reynolds number
 - (c) Ground water flow is very cool
 - (d) Ground water has very high Reynolds number
- (23) The drainage coefficient for an irrigated area can be estimated as
 - (a) (Deep percolation + seepage loss) irrigation depth/irrigation intervals
 - (b) (Hydraulic gradient x Area x Velocity)
 - (c) Hydraulic connectivity x Hydraulic gradient
 - (d) None of these above option
- (24) The index of hydraulic gradient in Darcy's equation is
 - (a) 1/2

(b) 1

(c) 2/3

- (d) 0
- (25) is the depth in centimeters of water drained off from a given area in 24 hours
 - (a) Specific storage

(b) Hydraulic conductivity

(c) Drainage coefficient

(d) storage coefficient

Directions (Questions No. 2 - 6): Write short notes on:

 $(5 \times 3 = 15)$

- 2. Diversion weir, Pickup weir and Permeable weir.
- 3. Minor, Medium and Major Irrigation Project.
- 4. Water conveyance efficiency, Water application efficiency and Water distribution efficiency.
- 5. Centrifugal pump, Submersible pump and Hydraulic Ram.
- 6. Crop coefficient, Actual evapotranspiration and Potential evapotranspiration.

Direcction (Question No. 7 & 8): Explain in brief (Answer any one):

 $(1 \times 10 = 10)$

- 7. Design a concrete lined trapezoidal channel to carry a discharge of 200 cumecs at a slope of 1 in 5000. The side slopes of the channel are 1:1 and manning's coefficient of rugosity may be taken as 0014. Assume the limiting velocity in the channel as 2 m per second
- 8. A sandy loam soil holds water at 140 mm/m depth between field capacity and permanent wilting point The root depth of the crop is 30cm and the allowable depletion of water is 35 % The daily water use by the crop is 5 mm/day The area to be irrigated is 60 ha and water can be diverted at 28 lps The surface irrigation application efficiency is 40% There are no rainfall and ground water contribution

Determine

- (a) Allowable depletion depth between irrigations
- (b) Frequency of irrigation
- (c) Net application depth of water
- (d) Volume of water required
- (e) Time to irrigate 4 ha plot

PART - B (50 MARKS)

9.	Choose the correct answer: (20>				(20×1=20)		
	(1) Granite is mainly composed of						
		(a)	quartz and mica	(b)	felspar and mica		
		(c)	quartz and felspar	(d)	quartz, felspar and mica		
	(2) A good building stone is one which does not absorb more than of its day's immersion				nore than of its weight of water after one		
		(a)	5%	(b)	10%		
		(c)	15%	(d)	25%		
	(3)	The crushing strength of a stone depend upon its					
		(a)	Texture	(b)	specific gravity		
		(c)	workability	(d)	both (a) and (b)		
	(4)	(4) A first-class brick should not absorb water more than 20% of its own dry weight a immersion in cold water					
		(a)	10%	(b)	15%		
		(c)	20%	(d)	25%		
	(5)	A fir	st-class brick should have a minimum crush	ing st	rength of		
		(a)	$7MN/m^2$	(b)	105 MN/m ²		
		(c)	125 MN/m ²	(d)	14 MN/m ²		
(6) The compressive strength of paving bricks should not be less than				t be less than			
		(a)	20 MN/m ²	(b)	30 MN/m ²		
		(c)	40 MN/m ²	(d)	50 MN/m ²		
	(7)						
		(a)	Feebly hydraulic lime	(b)	moderately hydraulic lime		
		(c)	eminently hydraulic lime	(d)	none of these		
(8) The ultimate strength of ceme			altimate strength of cement is provided by				
		(a)	Silica	(b)	di-calcium silicate		
		(c)	tri-calcium silicate	(d)	tri-calcium aluminate		
(9) Le-chatelier method is used to determine							
		(a)	initial setting of cement	(b)	fineness of cement		
		(c)	soundness of cement	(d)	normal consistency of cement		
(10) A twisted bar has about more yield stress than ordinary mild steel bar					ary mild steel bar		
		(a)	10%	(b)	20%		
		(c)	35%	(d)	50%		
	(11)	Inas	ingly reinforced beam, the effective depth i	s me	asured from the compression edge to the		
		(a)	Tensile edge	(b)	centre of tensile reinforcement		
		(c)	neutral axis of the beam	(d)	none of these		
(12) In an over-reinforced section,			over-reinforced section,				
	(a) Steel reinforcement is not fully stressed to its permissible value						
		(b) Concrete is not fully stressed to its permissible value					
		(c)	Either (a) or (b)				
	(d) Both (a) and (b)						

(13)	For l	For M15 grade concrete, the section is to be redesigned if shear stress is more than						
	(a)	05 N/mm ²	(b)	1 N/mm ²				
	(c)	15 N/mm ²	(d)	2 N/mm ²				
(14)		oubly reinforced rectangular beam, the a nissible stress in tension in steel	llow	able stress in compression steel is	the			
	(a)	equal to	(b)	less than				
	(c)	greater than						
(15)	Inas	slab, the transverse reinforcement is provide	led at	t to the span of the slab				
	(a)	45°	(b)	60°				
	(c)	75°	(d)	90°				
(16)	The	main factor to be considered while preparin	ıg a d	etailed estimate, is				
	(a)	Quantity of the materials						
	(b)	Availability of the materials						
	(c)	Transportation of materials						
	(d)	Location of site and local labour charges						
	(e)	All of the above						
(17)	The	volume is measured correct to the nearest						
	(a)	001 cum	(b)	002 cum				
	(c)	003 cum	(d)	004cum				
	(e)	005 cum						
(18)	Acco	of the sequence is						
	(a)	Length, breadth, height	(b)	Breadth, length, height				
	(c)	Height, length, breadth	(d)	None of these				
(19)	(19) The excavation exceeding 15m in width and 10 sqm in plan area with a depth r cm, is termed as							
	(a)	Excavation	(b)	Surface dressing				
	(c)	Cutting	(d)	Surface excavation				
(20)	The f	following item of earthwork is not measured	arately					
	(a)	Setting out of works	(b)	Site clearance				
	(c)	Dead men	(d)	Steps in deep excavation				
	(e)	All of the above						
Direction	(Ques	tion 10 - 19) Write short notes on:		(10×2=2	20)			
10.	10. What are admixtures and pH value of water to be used in concrete?							
11.	11. Singly reinforced beam and doubly reinforced beam.							
12.	Limitation of slump test.							
13.	Water cement ration and its effect on strength of concrete.							
14.	Types of cement.							
15.	Dair	y barn and cattle-shed.						
16.	Aque	educts and Canals.						
17.	Sites	selection of farm houses and poultry-shed.						

18. Classification of aggregates.

19. Estimation and costing.

Direction (Quuestion 20-21) Explain in brief:

 $(2 \times 5 = 10)$

20. Find out the Economic depth of a channel from the following data:-

Bed width = 5.0m, Full supply level = 501.00m, Bed level = 500.00m, Height of bank above F.S.L. = 0.50m, side slope in cutting = 1:1, side slope in banking = $1\frac{1}{2}:1$. Top width of bank = 2m

* [for economic depth of excavation, sec area of digging = sec area of banking $Bd + Sd^2 = (b_1 + b_3) h + 2 S_1 h_2$,

where B=bed width of channel, S:1=side slope in cutting, $S_1:1=side$ slope in filling]

21. Explain briefly the procedure for preparation of Detailed Project Report of Minor Irrigation Project.
