MIZORAM PUBLIC SERVICE COMMISSION

TECHNICAL COMPETITIVE EXAMINATIONS FOR PRINCIPAL, GOVT. INDUSTRIAL TRAINING INSTITUTE UNDER LABOUR, EMPLOYMENT, SKILL DEVELOPMENT & ENTREPRENEURSHIP DEPARTMENT, GOVERNMENT OF MIZORAM, JANUARY-2024

MECHANICAL ENGINEERING PAPER-I

Time Allowed: 3 hours

FM: 200

SECTION - A (Multiple Choice questions) (100 Marks)

All questions carry equal mark of 2 each. Attempt all questions.

This Section should be answered only on the **OMR Response Sheet** provided.

1.	Anis	solated system is one in which			
	(a) both energy and mass cross the boundary of the system				
	(b) the mass does not cross the boundary, but energy interaction takes place				
	(c) neither mass nor energy cross the boundary of the system				
	(d) the mass crosses the boundary but energy does not				
2.	2. The perpetual motion machine of the first kind is impossible according to the				
	(a)	zeroth law of thermodynamics	(b)	first law of thermodynamics	
	(c)	second law of thermodynamic	(d)	third law of thermodynamics	
3.	Inter	nal energy of a perfect gas depends on			
	(a)	temperature, specific heat and enthalpy	(b)	temperature, specific heat and entropy	
	(c)	temperature, specific heat and pressure	(d)	temperature only	
4.	Durin	ng a throttling process		•	
	(a)	internal energy remains constant	(b)	enthalpy of fluid remains constant	
	(c)	pressure remains constant	(d)	temperature remains constant	
5.		mpossible to construct an engine which wh pt to extract the heat from a single temperate	_		

- fect.
 - (a) It refers to Clasius statement.
- (b) It refers to Kelvine-Planck's statement.
- (c) It refers to Carnot's theorem.
- (d) It refers to Clasius's theorem
- 6. Boundary layer thickness is the distance from the boundary to the point where velocity of the fluid is
 - (a) Equal to 10% of free stream velocity
- (b) Equal to 50% of free stream velocity
- (c) Equal to 90% of free stream velocity
- (d) Equal to 99% of free stream velocity
- 7. What is the correct formula for Euler's equation of motion? if, $\rho =$ density of the fluid, p = pressure force g = acceleration due to gravity, v = velocity of the fluid
 - (a) $(\partial p/\rho) + (\partial g/\rho) + (\partial v/\rho) = 0$
- (b) $(\partial p/\rho) + (\partial g/\rho) + (v dv) = 0$
- (c) $(\partial p / \rho) + (g dz) + (v dv) = 0$
- (d) (p dp) + (g dz) + (v dv) = 0

8.	When	n the Mach number is between	the flow:	is called super-some flow.		
	(a)	1 and 2.5	(b)	2.5 and 4		
	(c)	4 and 6	(d)	1 and 6		
9.	A Ca	rnot cycle operates between temperatu	res of 727°C	and 227°C, the efficiency of the engine is		
	(a)	40%	(b)	50%		
	(c)	60%	(d)	45%		
10.	Whic	ch statement is true for Diesel cycle?				
	(a)	Heat addition at constant volume and l	neat rejectio	n at constant volume		
	(b)	Heat addition at constant volume and	heat rejectio	on at constant pressure		
	(c)	Heat addition at constant pressure and	heat rejecti	on at constant volume		
	(d)	Heat addition at constant pressure and	l heat rejecti	on at constant pressure		
11.	Heat	Heat transfer takes place from a high-temperature body to a low-temperature body according to				
	(a)	zeroth law of thermodynamics	(b)	first law of thermodynamics		
	(c)	second law of thermodynamics	(d)	third law of thermodynamics		
12.	A gra	y body has one of the following proper	ties:	•		
	(a)	It reflects all of the energy falling on it.	(b)	It transmits all of the energy falling on it.		
	(c)	It has constant emissivity.	(d)	It absorbs all of the energy falling on it.		
13. Which one of the following heat exchanger is most efficient for a difference?			ent for a given surface area and temperature			
		Parallel flow heat exchanger	(b)	Counter flow heat exchanger		
	` -	Cross flow heat exchanger	(d)	Shell and tube type heat exchanger		
14	` .	-conditioning of aeroplanes, using air a	` '			
17,		reversed Carnot cycle		reversed -Joule cycle		
	• •	reversed Brayton cycle	` '	reversed Otto cycle		
15	` '	deal gas-refrigeration cycle is similar to				
15.		Brayton cycle		Reversed Brayton cycle		
		Rankine cycle		Reversed Rankine cycle		
16	` '	gnition quality of petrol is expressed by	` '	•		
10.		Cetane number	(b)	Octane number		
	. ,	Calorific value	` '	All of these		
17	` '		• /			
1, , .	The phenomenon occurring in an open channel when a rapidly flowing stream abruptly changes to slowly flowing stream causing a distinct rise of liquid surface, is					
		Water hammer		Hydraulic jump		
	. ,	Critical discharge		None of the above		
18.	` '	n-Boltzmann's law is expressed as	, ,			
	(a)	$Q = sAT^4$	(b)	$Q = sA^2T^4$		
	(c)	$Q = sAT^4$ $Q = sAT^2$	(d)	$Q = sA^2T^4$ $Q = AT^4$		
19.	Pecle	et number is the ratio ofn	umber to	number.		
	(a)	Reynolds, Schemdit	(b)	Prandtl, Weber		
	(c)	Prandtl, Schemdit	(d)	Reynolds, Prandtl		

20.	The difference	ce between dry bulb temperature and	wet b	ulb temperature, is called	
	(a) dry bul	b depression	(b)	wet bulb depression	
	(c) dew po	int depression	(d)	degree of saturation	
21.	The process g	generally used in winter air conditioni	ng to	warm and humidify the air, is called	
	(a) humidif	fication	(b)	dehumidification	
	(c) heating	and humidification	(d)	cooling and dehumidification	
22.	The Euler's e	equation of motion is a			
	(a) stateme	ent of energy balance		•	
	(b) stateme	ent of conservation of momentum for	a real	fluid	
	(c) stateme	ent of conservation of momentum for	an inc	ompressible flow	
	(d) stateme	ent of conservation of momentum for t	he flo	w of an inviscid fluid	
23.	Which one of the following is the dimension of specific weight of a liquid?				
	(a) $[ML^{-3}]$	Γ ⁻²]	(b)	[ML ³ T ⁻²]	
	(c) $[ML^{-2}]$	[-2]	(d)	$[ML^2T^2]$	
24.	The condition	ns across a normal shock	•		
	(a) Lie at tl	he intersection of the Fanno and Raylo	eigh li	ines for the flow	
	(b) Have th	ne same stagnation temperature			
	• •	a) and (b) are true			
	(d) Both (a	a) and (b) are false			
25.	Pitot-tube is a	used to measure			
	(a) dischar	•	(b)	average velocity	
	(c) velocity	y at a point	(d)	pressure at a point	
26.	-	oot of the ratio of inertia force to force		· •	
	(a) Reynolo		` ′	Froude number	
	(c) Mach n	umber	(d)	Euler number.	
27.		following assumptions:			
	1. Steady flox			•	
	2. Inviscid flo	•			
	 Flow along Conservation 				
	For Bernoulli's equation to be valid between any two points in a flow field, besides incompressible flow and irrotational flow, the assumptions required would include				
	(a) 1 and 2	· -		1, 2 and 4	
	(c) 2, 3 and			1, 3 and 4.	
28.		flow is a flow in a constant area duct			
	· -	ction but without heat transfer	(b)	without friction but with heat transfer	
	` '	th friction and heat transfer	(d)	without either friction or heat transfer	
29.	The Grashof	number in natural convection plays s	ame re	ole as	
-		number (Pr) in forced convection			
	• /	ds number (Re) in forced convection			
	(c) Nusselt	number (Nu) in forced convection	•		
	(d) none of	fthe above			

- 30. In a refrigeration system, the expansion device is connected between the
 - (a) Compressor and Condenser

(b) Condenser and Receiver

(c) Receiver and Evaporator

(d) Evaporator and Compressor

- 31. The knocking in spark ignition engines can be reduced by
 - (a) Retarding the spark

(b) Increasing the engine speed

(c) Both (a) and (b)

(d) None of these

- 32. The air standard Otto cycle comprises
 - (a) two constant pressure processes and two constant volume processes
 - (b) two constant pressure and two constant entropy processes
 - (c) two constant volume processes and two constant entropy processes
 - (d) none of the above.
- 33. The value of the compressibility of an ideal fluid is
 - (a) Zero

(b) Unity

(c) Infinity

- (d) More than that of a real fluid
- 34. When a tank containing liquid moves with an acceleration in the horizontal direction, then the free surface of the liquid
 - (a) Remains horizontal

(b) Becomes curved

(c) Falls on the front-end

- (d) Falls on the back end
- 35. Which of the following results are more accurate?
 - (a) Rectangular notch

(b) Triangular weir

(c) Both are equally accurate

- (d) Rectangular weir
- 36. The phenomenon occurring in an open channel when a rapidly flowing stream abruptly changes to slowly flowing stream causing a distinct rise of liquid surface, is
 - (a) Water hammer

(b) Hydraulic jump

(c) Critical discharge

- (d) 'None of the above
- 37. A pipe flow system with flow direction is shown in the Fig. The following table gives the velocities and the corresponding areas:

Pipe No.	Area (cm ²)	Velocity (cm/s)
1	50	10
2 .	50	V_2
3	80	5
4	70	5

The value of V2 is

(a) 2.5 cm/s

(b) 5.0 cm/s

(c) 7.5 cm/s

(d) $10.0 \, \text{cm/s}$

38.	. Specific speed of a turbine is defined as the speed of the turbine which				
	(a) produces unit power at unit head	(b)	produces unit horse power at unit discharge		
	(c) delivers unit discharge at unit head	(d)	delivers unit discharge at unit power.		
39.	39. A nozzle is designed for				
	(a) maximum pressure at the outlet	(b)	maximum discharge		
	(c) maximum pressure and maximum discharge	(d)	maximum kinetic energy at the outlet		
40.	40. A submerged body is said to be in a stable equilibrium, if its centre of gravity the centre of buoyancy.				
	(a) Coincides with	(b)	Lies below		
	(c) Lies above	(d)	None of these		
41.	Radiation shields are used				
	(a) To increase radiant heat transfer	(b)	To decrease radiant heat transfer		
	(c) To maintain radiant heat transfer constant	(d)	None of the above		
42.	Heat is mainly transferred by conduction, convection	n an	d radiation in		
	(a) Insulated pipes carrying hot water	(b)	Refrigerator freezer coil		
	(c) Boiler furnaces	(d)	Condensation of steam in a condenser		
43.	Shape factor for sphere is				
	(a) $4 \pi r_1 r_2$	(b)	$4 \pi r_1 r_2/r_2 - r_1$		
	(c) $4 \pi / r_2 - r_1$	(b)	$r_1 r_2 / r_2 - r_1$		
44.	For a prescribed temperature difference, bodies with	the s	ame shape factor will allow heat conduction		
	proportional to	<i>(</i> 1.)			
	(a) k/2	(p)			
4	(c) k	` ,	k/4		
45.	Fourier law of heat conduction is based on the assu	-			
	(a) Heat flow through a solid is one dimensional				
	(c) Both (a) and (b)	(a)	None of the options		
46.	The draught in a boiler is provided to	(1)	6		
	(a) force the air on the furnace		force the hot gases on superheater		
4=	(c) discharge the flue gases through chimney	(a)	all of the above		
47.	A Cornish boiler is	(h)			
	(a) multi-tubular boiler(c) a fire tube boiler	(b)	a water-tube boiler		
40		(d)	flue gas surrounds the tube		
48.	By first law of thermodynamics,				
	(a) $Q = \Delta E - W$		$Q = \Delta E + W$		
	(c) $Q=-\Delta E-W$	(d)	Q=-ΔE+W		
49.	Second law of thermodynamics defines				
	(a) internal energy	(b)	work		
	(c) enthalpy	(d)	entropy		
50.	The type of rotary compressor used in gas turbine	is of			
	(a) Centrifugal type	. ,	Axial flow type		
	(c) Radial flow type	(d)	None of this		

SECTION - B (100 Marks)

All questions carry equal marks of 10 each.

This Section should be answered only on the Answer Sheet provided.

- 1. Define steady flow process. Write the steady flow energy equation (SFEE) and explain the significance of each term. (10)2. Define the following terms: $(2 \times 5 = 10)$ (a) Coefficient of performance (b) tonne of refrigeration 3. Derive an expression for the C.O.P of a Bell-Coleman Cycle refrigeration system. A refrigerator is working between the temperature -30°C and 35°C. What is the maximum possible COP of the refrigerator? If the actual COP is 75% of maximum, determine the refrigeration effect per KW of power input. (5+5=10)4. What do you mean by one dimensional isentropic flow? Enumerate the governing equations related to isentropic flow. (5+5=10)5. Discuss briefly the basic performance parameters in I.C engine. Compare in brief the detonation phenomenon in SI and CI engine. (5+5=10)
- 6. State first law of thermodynamics. Define entropy and show that entropy is a property of a system. (2+8=10)
- 7. State the Bernoulli's equation. List out the assumptions that are used to derive the equation. (10)
- 8. Define the terms: Major energy losses and minor energy losses in pipe. (10)
- 9. What are the types of nozzles? Explain with neat diagrams. (10)
- 10. A centrifugal compressor delivers 50 kg of air per minute at a pressure of 2 bar and 97°C. The intake pressure and temperature of the air is I bar and 15°C. If no heat is lost to the surrounding, find: (i) index of compression and (ii) power required, if the compression is isothermal. Take R = 287 J/kg K.
 (10)
