MIZORAM PUBLIC SERVICE COMMISSION Mizoram Civil Services (Combined Competitive)
 Main Examination, 2023

MATHEMATICS PAPER-I

Marks for each question is indicated against it.
Attempt any 5 (five) questions taking not more than 3 (three) questions from each Part.

PART-A

1. (a) Show that a nonempty subset S of a vector space V over F is a subspace of V if and only if $a \alpha+b \beta \in S$ whenever $\mathrm{a}, \mathrm{b} \in \mathrm{F}$ and $\mathrm{a}, \mathrm{b} \in S$.
(b) Let W be subspace of a finite dimentional vector space V . Then, prove that $\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W$.
(c) Obtain the characteristic equation of the matrix $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$ and verify Cayley-Hamilton
Theorem.
2. (a) Evaluate $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$.
(b) Find all the asymptotes of $x^{3}+x^{2} y-x y^{2}-y^{3}-3 x-y-1=0$.
(c) If $x=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}$, show that
(i) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$
(ii) $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\left(1-4 \sin ^{2} u\right) \sin 2 u$
(d) Show that the maximum rectangle with a given perimeter is a square.
3. (a) Evaluate any two of the following:
(i) $\int \frac{2 x+1}{x^{3}+x^{2}-2 x} d x$
(ii) $\int \frac{d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}$
(iii) $\int \frac{x e^{x}}{(x+1)^{2}} d x$
(b) Examine the convergence of improper integral $\int_{0}^{\infty} \frac{d x}{(x+1)(x+2)}$
(c) Evaluate $\int_{1}^{e} \int_{0}^{\log y} \int_{1}^{e^{x}} \log z d y d x d z$.
(d) Find the area of the segment cut off from the parabola $y^{2}=4 x$ by the straight line $y=8 x-1$.
4. (a) Reduce the equation $6 y^{2}-18 y z-6 x z+2 x y-9 x+5 y-5 z+2=0$ to its canonical form.
(b) Find the shortest distance between the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} ;$
$\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$
(c) Find the equation of the cone whose vertex is $(1,2,3)$ and guiding curve is the circle

PART - B

5. (a) Find the orthogonal trajectories of family of curves $y=a x^{2}, a$ being a parameter.
(b) Solve $y+p x=p^{2} x^{4}$
(c) Solve : $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \log (1+x)$.
(d) Show that $L\left\{\frac{\sin t}{t}\right\}=\tan ^{-1} \frac{1}{p}$ and hence find $L\left\{\frac{\sin a t}{t}\right\}$. Does the Laplace transform of $\frac{\cos a t}{t}$ exists?
6. (a) A particle of mass m is moving along the axis of x under a central force $m m x$ to the origin. When $t=2$ seconds, it passes through the origin and when $t=4$ seconds, its velocity if 4 cm per second. Determine the motion and show that, if the complete period is 16 seconds, the amplitude of the path is $\frac{32 \sqrt{2}}{\pi} \mathrm{~cm}$.
(b) A particle moving in a straight line is acted on by a force which works at a constant rate and changes its velocity from u to v in passing over a distance x. Show that the time taken is

$$
\begin{equation*}
\frac{3(u+v) x}{2\left(u^{2}+u v+v^{2}\right)} \tag{6}
\end{equation*}
$$

(c) A gun of mass M fires a shell of mass m horizontally and the energy of explosion is such as would be sufficient to project the shell vertically to a height h. Show that the velocity of recoil of the gun
is $\left\{\frac{2 m^{2} g h}{M(m+M)}\right\}^{\frac{1}{2}}$.
7. (a) Forces P, Q, R act along the sides of the triangle formed by the lines $x+y=1, y-x=1, y=2$, find the magnitude and the line of action of the resultant.
(b) The least force which will move a weight up an inclined plane is P. Show that the least force, acting parallel to the plane which will move the weight upwards is $P \sqrt{1+\mu^{2}}, \mu$ being the coefficient of friction of the plane.
(c) A square lamina rests with its plane perpendicular to a smooth wall one corner being attached to a point in the wall by a fine string of length equal to the side of the square. Find the position of equilibrium and show that it is stable.
8. (a) Find the value of a for the vector $\vec{A}=(x+3 y) \hat{i}+(y-2 z) \hat{j}+(x+a z) \hat{k}$ is solenoidal.
(b) Find the constants l, m, n so that $\vec{u}=(x+2 y+l z) \hat{i}+(m x-3 y-z) \hat{j}+(4 x+n y+2 z) \hat{k}$ is irrotational.
(c) Using Gauss' divergence theorem, evaluate $\iint_{S} \vec{F} . \hat{n} d S$.

