MIZORAM PUBLIC SERVICE COMMISSION

TECHNICAL COMPETITIVE EXAMINATIONS FOR JUNIOR GRADE OF MIZORAM ENGINEERING SERVICE, P&E CADRE (ELECTRICAL WING) UNDER POWER & ELECTRICITY DEPARTMENT,

GOVERNMENT OF MIZORAM, JULY-2023

MECHANICAL ENGINEERING PAPER-I

Time Allowed: 3 hours FM: 200

	SECTION - A (Multiple Choice questions) (100 Marks)				
		All questions carry equal mark of 2 e		• •	
		This Section should be answered only on the	ie <u>O</u> I	<u>IK Response Sheet</u> provided.	
1.	Shoo	ting flow can never occur			
	(a)	Directly after a hydraulic jump	(b)	In a horizontal channel	
	(c)	In a mild slope channel	(d)	In a steep slope channel	
2.	In a c	entrifugal compressor, the pressure rise takes	place	ein	
	(a)	impeller only	(b)	diffuser only	
	(c)	casing only	(d)	impeller and diffuser both	
3.	A sin	nilarity in thermal quantities is achieved when			
	(a)	Nusselt number is same for both the fields	(b)	Nusselt number is different for both the fields	
	(c)	Prandtl number is same for both the fields	(d)	Prandtl number is different for both the fields	
4.		cket of water is hanging from a spring balance		± ±	
		ning sides of bucket from another support. The	sprir	ng balance reading will	
	` ′	(a) Increase			
	` '	Decrease			
	` '	Remain same			
	(d)	Increase/decrease depending on depth of imn	nersio	on	
5.	A clo	sed system is one in which			
	(a)	both energy and mass cross the boundary of	the sy	ystem	
	(b)	the mass does not cross the boundary, but en		•	
	(c)	neither mass nor energy cross the boundary of			
	(d)	the mass crosses the boundary but energy do	es no	t	
6.	6. For the measurement of flow rate of liquid, the method used is				
	(a)	Conveyor-based methods	(b)	Bourdon tube	
	(c)	Coriolis method	(d)	Thermal mass flow measurement	
7.	A sec	quence of processes, in which initial and final s	states	of a system are identical, is called a	
	(a)	path function	(b)	point function	
	(c)	cycle	(d)	none of the above	

8.	The mercury does not wet the glass. This is due to the property of the liquid known as				
	(a)	Cohesion	(b)	Adhesion	
	(c)	Viscosity	(d)	Surface tension	
9.	For the same inlet and exit temperatures of two fluids, the LMTD for counter flow is always				
	(a)	Smaller than LMTD for parallel flow	(b)	Greater than LMTD for parallel flow	
	(c)	Same as LMTD for parallel flow	(d)	Unpredictable	
10.	The perpetual motion machine of the first kind is impossible according to the				
	(a)	zeroth law of thermodynamics	(b)	first law of thermodynamics	
	(c)	second law of thermodynamics	(d)	third law of thermodynamics	
11.	The component of the total force exerted by fluid on a body in the direction parallel to the direction of motion is called as				
	(a)	Lift	(b)	Drag	
	(c)	both (a) & (b)	(d)	none of the above	
12.	Which one of the following is the dimension of specific weight of a liquid?				
	` /	$[ML^{-3}T^{-2}]$	\ /	$[ML^3 T^{-2}]$	
	(c)	$[ML^{-2}T^{-2}]$	(d)	$[ML^2 T^2]$	
13.	A beaker is filled with a liquid up to the mark of one litre and weighed. The weight of the liquid is found to be 6.5 N. The specific gravity of the liquid will be				
	` '	0.65	` '	0.66	
	` '	0.67	` '	0.68	
14.	The value of the compressibility of an ideal fluid is				
	` ′	Zero	. ,	Unity	
	` '	Infinity	(d)	More than that of a real fluid	
15.		e critical point, the temperature of water is e			
	. ,	0°C	` '	100°C	
	` '	374°C	(d)	−100°C	
16.		nometer is used to measure	4.	_	
		Velocity	` '	Pressure	
	` ′	Viscosity	. ,	Density	
17.	What is the correct formula for Euler's equation of motion? if, $q = density$ of the fluid, $p = pressure$ force, $g = acceleration$ due to gravity, $v = velocity$ of the fluid				
	(a)	$(\partial p / q) + (\partial g / q) + (\partial v / q) = 0$	(b)	$(\partial p / q) + (\partial g / q) + (v dv) = 0$	
	(c)	$(\partial p / q) + (g dz) + (v dv) = 0$	(d)	(p dp) + (g dz) + (v dv) = 0	
18.	Whic	Which fluid does not experience shearing stress during flow?			
	(a)	Pseudoplastic	(b)	Dilatant	
	(c)	Newtonian	(d)	Inviscid	
19.	When	n the Mach number is between	the flo	w is called super-sonic flow.	
	(a)	1 and 2.5	(b)	2.5 and 4	
	(c)	4 and 6	(d)	1 and 6	

20.	In an isothermal process				
	(a)	temperature increases gradually	(b)	volume remains constant	
	(c)	change in internal energy is zero	(d)	enthalpy change is maximum	
21.	21. When a tank containing liquid moves with an acceleration in the horizontal direction, then the surface of the liquid				
	(a)	Remains horizontal	(b)	Becomes curved	
	(c)	Falls on the front-end	(d)	Falls on the back end	
22. The second law of thermodynamics deals with					
	` ′	direction of process and quality of energy	(b)	energy balance	
	(c)	balance of internal energy	(d)	system efficiency	
23.	A Ca	rnot cycle operates between temperatures of	727°C	C and 227°C, the efficiency of the engine is	
	` '	40%	()	50%	
	(c)	60%	(d)	45%	
24.		sfer of heat energy takes place in accordance v	vith		
		Zeroth law of thermodynamics	` '	First law of thermodynamics	
	(c)	Second law of thermodynamics	(d)	Third law of thermodynamics	
25.		mal conductivity of powderly and porous mate	rials		
		Decreases with increasing temperature		Increases with increasing temperature	
		Is independent of temperature change	(d)	None of the above	
26.		sient heat conduction means			
	` /	heat conduction for a short time			
		conduction when the temperature at a point v	aries	with time	
		very little heat transfer	1.00		
	` ,	heat conduction with a very small temperatur			
27.		emperature profile for heat conduction througence of a heat source is	gh a v	vall of constant thermal conductivity in the	
	(a)		(b)	parabolic	
	` /	logarithmic	(d)	hyperbolic	
28.	Whe	n does a vapour become superheated?	` '		
	(a) when the temperature of vapour is less than the saturation temperature at given pressure				
	(b)	when the temperature of vapour is more than		• •	
	(c)	when the temperature of vapour is equal to the	ne sat	uration temperature at given pressure	
	(d)	none of the mentioned			
29.	29. Biot number is defined as				
	(a)	k/hL	(b)	kL/h	
	(c)	hL/k	(d)	h/kL	
30.	The a	air standard Otto cycle comprises			
	(a) two constant pressure processes and two constant volume processes			t volume processes	
	(b)	two constant pressure and two constant entr	ору р	processes	
	(c) two constant volume processes and two constant entropy processes				

(d) none of the above.

31.	On a	psychrometric chart, the dew point temperatu	re lir	nes are		
	(a)	curved	(b)	horizontal and uniform		
	(c)	vertical	(d)	straight and inclined		
32.	The ratio of work-done per cycle to the stroke volume of the compressor is known as					
	(a)	Compressor capacity	(b)	Compression ratio		
	(c)	Compressor efficiency	(d)	Mean effective pressure		
33.	The ratio of kinetic energy of flow relative to boundary layer enthalpy difference is called					
	(a)	Biot number	(b)	Eckert number		
	(c)	Grashhoff number	(d)	Stanton number		
34.	The type of rotary compressor used in gas turbine is of					
	(a)	Centrifugal type	(b)	Axial flow type		
	(c)	Radial flow type	(d)	None of this		
35.	In liquid metal heat transfer, Nusselt number is a function of					
	(a)	Prandtl number only	(b)	Reynolds number only		
	(c)	Peclet number only	(d)	Peclet and Reynolds number		
36.	Supercharging is the process of.					
	(a)	Providing the forced cooing air				
	(b)	Raising exhaust pressure				
	(c)	Suppling the intake of an engine with air at a d atmosphere	lensit	y greater than the density of the surrounding		
	(d)) Suppling compressed air to remove combustion product fully				
37.	Gases have poor					
	(a)	tranmissitivity	(b)	absorptivity		
	(c)	reflectivity	(d)	emissivity		
38.	In thermosyphon system there is (are)					
	(a)	no pump	(b)	one pump		
	(c)	two pumps	(d)	three pumps		
39.	The following is considered as best antifreeze solution					
	(a)	Ethylene glycol	(b)	Distilled glycerin		
	(c)	Methanol	(d)	Denatured alcohol		
40.	A flu	id does not flow				
	(a)	in the presence of pressure	(b)	in the absence of pressure		
	(c)	in the presence of shear stress	(d)	in the absence of shear stress		
41.	If the position of metacentre M remains lower than c.g. of the body, G, the body will remain in a state of					
	(a)	stable equilibrium	(b)	unstable equilibrium		
		neutral equilibrium	(d)	any of the above		
42.	In flu	id mechanics, the continuity equation is a math	emat	ical statement embodying the principle of		
		conservation of momentum		conservation of mass		
	(c)	conservation of energy	(d)	none of the above		

43. Which	13. Which of the following fuel material occurred naturally?			
(a)	U235	(b)	Pu239	
(c)	Pu241	(d)	U-233	
44. A Ka	aplan turbine is			
(a)	an inward flow impulse turbine	(b)	low head axial flow turbine	
(c)	high head axial flow turbine	(d)	high head mixed flow turbine	
45. Com	bustion in CI engines is			
(a)	Laminar	(b)	Turbulent	
(c)	Homogeneous	(d)	Heterogeneous	
46. The	ignition quality of petrol is expressed by			
(a)	Cetane number	(b)	Octane number	
(c)	Calorific value	(d)	All of these	
47. A no	rmal shock propagated into still air travels wit	h a sp	peed	
(a)	Equal to the speed of sound in the still air			
(b)	Larger than the speed of sound in the still air			
(c)	Smaller than the speed of sound in the still air	r		
(d)	(d) All of the above is possible, depending on the air temperature			
48. The phenomenon occurring in an open channel when a rapidly flowing stream abruptly changes slowly flowing stream causing a distinct rise of liquid surface, is				
(a)	Water hammer	(b)	Hydraulic jump	
(c)	Critical discharge	(d)	None of the above	
49. In a f	fire-tube boiler			
(a)	water flows through the tubes	(b)	flue gas flows through the tubes	
(c)	fire is produced in the tubes	(d)	flue gas surrounds the tube	
50. A no	zzle is designed for			
(a)	maximum pressure at the outlet	(b)	maximum discharge	
(c)	maximum pressure and maximum discharge	(d)	maximum kinetic energy at the outlet	

SECTION - B (Short answer type question) (100 Marks)

All questions carry equal marks of **5** each.

This Section should be answered only on the **Answer Sheet** provided.

- 1. What is a heat pump? How does it differ from a refrigerator? Explain.
- 2. State Fourier law of heat conduction and by using it derive an expression for steady state heat conduction through a plane wall of thickness L maintains its two surfaces at temperatures T₁ and T₂, respectively.
- **3.** Define refrigerating effect. What is one tonne of refrigeration? What is the basic formula for calculating the tonnage of refrigeration?
- **4.** What is sensible heating or cooling?
- **5.** What is the difference between an ideal and a real fluid?
- **6.** Define the following terms:(i) Total pressure, and(ii) Centre of pressure.
- 7. List the assumptions which are made while deriving Bernoulli's equation.
- **8.** Define critical radius of insulation with neat graph.
- **9.** What are the types of nozzles? Explain with neat diagrams.
- 10. State first law of thermodynamics and mention its limitation.
- 11. Define irreversibility and write a short note on conditions for reversibility.
- **12.** What do you mean by one dimensional isentropic flow? Enumerate the governing equations related to isentropic flow.
- 13. Write down the equations for stagnation pressure, stagnation density and stagnation temperature.
- **14.** Define Mach number. Classify fluid flows on the basis of Mach number. What are the effects of Mach number on fluid flow?
- **15.** Describe the working of a single stage reciprocating air compressor.
- 16. What are natural refrigerants? Discuss their potentials and limitations.
- 17. What are the types of turbines suitable under the following conditions: (i) high head and low discharge (ii) medium head and medium discharge and (iii) low head and large discharge.
- 18. Explain why penstock pipes are of larger diameter compared to the jet diameters.
- 19. What is the fundamental difference between the operation of impulse and reaction steam turbines?
- 20. Compare in brief the detonation phenomenon in SI and CI engine.

* * * * * * *