MIZORAM PUBLIC SERVICE COMMISSION Mizoram Civil Services (Combined Competitive) Main Examination, 2023

MATHEMATICS PAPER-II

Time Allowed: 3 hours
FM : 100
Marks for each question is indicated against it.
Attempt any 5 (five) questions taking not more than 3 (three) questions from each Part.

PART-A

1. (a) Let $f: G \rightarrow G^{\prime}$ be an onto homomorphism with $\operatorname{Ker} f=K$. For $H 8$ a subgroup of $G 8$, define $H=\left\{x \in G: f(x) \in H^{\prime}\right\}$. Prove the following:
$(4+4=8)$
(i) H is a subgroup of G and $K \subseteq H$
(ii) $H 8$ is a normal subgroup of $G 8$ if and only if H is normal in G.
(b) Prove that an ideal M in Z is a maximal ideal if and only if $M=p Z$ where p is a prime.
(c) Prove that every group of prime order is cyclic.
2. (a) Let $f_{n}:[a, b] \rightarrow R$ be defined by $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$, where 0 is an interior point of $[\mathrm{a}, \mathrm{b}]$. Prove that the sequence of functions f_{n} is point-wise convergent but not uniformly convergent.
(b) Show that $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$ exists if and only if m and n are both positive.
(c) If $f(x, y)=\left\{\begin{array}{cl}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { when }(x, y) \neq(0,0) \\ 0 & \text { when }(x, y)=(0,0)\end{array}\right.$

Show that $f_{x y}(0,0) \neq \mathrm{f}_{y x}(0,0)$. Also show that $f(x, \mathrm{y})$ does not satisfy Schwarz's theorem.(6)
3. (a) Prove that the function $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}(z \neq 0), f(0)=0$ is continuous and that CauchyRiemann equations are satisfied at the origin, yet $f^{\prime}(z)$ does not exist there.
(b) Prove that if f has an isolated singularity at a then the point $\mathrm{z}=\mathrm{a}$ is a removable singularity if and only if $\lim _{z \rightarrow a}(z-a) f(z)=0$.
(c) If an analytic function $f(z)$ has a pole of order m at $z=a$. Show that $\frac{1}{f(z)}$ has a zero of order of m at $z=a$.
4. (a) Solve the following programming problem by graphical method.
$\operatorname{Maxz}=5 x_{1}+7 x_{2}$
subject to the constraints

$$
\begin{aligned}
& x_{1}+x_{2} \leq 4 \\
& 3 x_{1}+8 x_{2} \leq 24 \\
& 10 x_{1}+7 x_{2} \leq 35 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

(b) Find the dual of the following L.P.P.
$\operatorname{Min} z=x_{1}+x_{2}+x_{3}$
subject to the constraints
$x_{1}-3 x_{2}+4 x_{3}=5$
$x_{1}-2 x_{2} \leq 3$
$2 x_{2}-x_{3} \geq 4$
and $x_{1}, x_{2} \geq 0, x_{3}$ is unrestricted in sign
(c) Determine the optimum basic feasible solution to the following transportation problem.

where Q_{i} and D_{j} denote the ith origin and jth destination, respectively.

PART - B

5. (a) Form a partial differential equation by eliminating the arbitrary function from

$$
\begin{equation*}
z=y^{2}+2 f\left(\frac{1}{x}+\log y\right) \tag{6}
\end{equation*}
$$

(b) Reduce the equation $\frac{\partial^{2} z}{\partial x^{2}}=x^{2}\left(\frac{\partial^{2} z}{\partial y^{2}}\right)$ to a canonical form.
(c) Solve $\left(2 D^{2}-5 D D^{\prime}+2 D^{\prime 2}\right) z=24(y-x)$.
6. (a) Compute the positive root, correct to 3-significant figures by the method of bisection, of the equation $x^{4}+x^{2}-1=0$.
(b) Find the value of the integral $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using Simpson's $\frac{1}{3}$ rule. Hence, obtain the approximate value of p .
(c) Use Euler's method with $h=0.2$ to find the solution of the differential equation $\frac{d y}{d x}=x+y, \mathrm{y}(0)=0$ in the range $0 \leq x \leq 1.0$
7. (a) Using the laws of Boolean Algebra, prove the following:
(i) $(x+y) \cdot\left(\mathrm{x}+\mathrm{y}^{\prime}\right) \cdot\left(x^{\prime}+z\right)=x \cdot z$
(ii) $\mathrm{z} \cdot(x+y)+x^{\prime} \cdot z+y \cdot z^{\prime}=y+z$
(b) Convert the following numbers into the decimal number system:
(i) $(10110101)_{2}$
(ii) $(A 1 E 2)_{16}$
(iii) $(127.35)_{8}$
(c) Draw a circuit to realise the two input OR function and the two input AND function, using:
$(3+3=6)$
(i) only the NOR gate
(ii) only the NAND gates
8. (a) Prove that the Moment of Inertia of a uniform right circular solid cone of mass M, height h and base radius r, about a diameter of its base is $\frac{M}{20}\left(3 r^{2}+2 h^{2}\right)$.
(b) A rod of length $2 a$, is suspended by a string of length l, attached to one end; if the string and rod revolve about the vertical with uniform angular velocity and their inclination to the vertical be θ and ϕ respectively, show that $\frac{3 l}{a}=\frac{(4 \tan \theta-3 \tan \phi) \sin \phi}{(\tan \phi-\tan \theta) \sin \theta}$
(c) Find the equation of motion of a compound pendulum using Hamilton's equation.

