MIZORAM PUBLIC SERVICE COMMISSION Mizoram Civil Services (Combined Competitive) Main Examination, 2023

MATHEMATICS PAPER-II

Time Allowed : 3 hours

FM : 100

(5)

Marks for each question is indicated against it.

Attempt any 5 (five) questions taking not more than 3 (three) questions from each Part.

PART - A

- 1. (a) Let $f: G \to G'$ be an onto homomorphism with *Ker* f = K. For *H*8a subgroup of *G*8, define $H = \{x \in G : f(x) \in H'\}$. Prove the following: (4+4=8)
 - (i) *H* is a subgroup of *G* and $K \subseteq H$
 - (ii) H8 is a normal subgroup of G8 if and only if H is normal in G.
 - (b) Prove that an ideal M in Z is a maximal ideal if and only if M = pZ where p is a prime. (7)
 - (c) Prove that every group of prime order is cyclic.

2. (a) Let $f_n : [a,b] \to R$ be defined by $f_n(x) = \frac{nx}{1+n^2x^2}$, where 0 is an interior point of [a,b]. Prove that the sequence of functions f_n is point-wise convergent but not uniformly convergent. (6)

(b) Show that $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ exists if and only if m and n are both positive. (8)

(c) If
$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{when } (x,y) \neq (0,0) \\ 0 & \text{when } (x,y) = (0,0) \end{cases}$$

Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$. Also show that f(x, y) does not satisfy Schwarz's theorem.(6)

3. (a) Prove that the function $f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}$ ($z \neq 0$), f(0) = 0 is continuous and that Cauchy-

Riemann equations are satisfied at the origin, yet f'(z) does not exist there. (8)

- (b) Prove that if f has an isolated singularity at a then the point z = a is a removable singularity if and only if $\lim_{z \to a} (z - a) f(z) = 0.$ (8)
- (c) If an analytic function f(z) has a pole of order m at z = a. Show that $\frac{1}{f(z)}$ has a zero of order of m at z = a. (4)

4. (a) Solve the following programming problem by graphical method.

Max $z = 5x_1 + 7x_2$ subject to the constraints $x_1 + x_2 \le 4$ $3x_1 + 8x_2 \le 24$ $10x_1 + 7x_2 \le 35$ and $x_1, x_2 \ge 0$

(b) Find the dual of the following L.P.P.

 $Min \ z = x_1 + x_2 + x_3$ subject to the constraints $x_1 - 3x_2 + 4x_3 = 5$ $x_1 - 2x_2 \le 3$ $2x_2 - x_3 \ge 4$

and $x_1, x_2 \ge 0, x_3$ is unrestricted in sign

(c) Determine the optimum basic feasible solution to the following transportation problem. (8)

	\mathbf{D}_1	D_2	D 3	D_4	Capacity
Q 1	1	2	3	4	6
Q 2	4	3	2	0	8
Q 3	0	2	2	1	10
Demand	4	6	8	6	24 (Total)

where \boldsymbol{Q}_i and \boldsymbol{D}_j denote the ith origin and jth destination, respectively.

(4)

(8)

- 3 -

PART - B

5. (a) Form a partial differential equation by eliminating the arbitrary function from

$$z = y^2 + 2f\left(\frac{1}{x} + \log y\right) \tag{6}$$

(b) Reduce the equation
$$\frac{\partial^2 z}{\partial x^2} = x^2 \left(\frac{\partial^2 z}{\partial y^2} \right)$$
 to a canonical form. (8)

(c) Solve
$$(2D^2 - 5DD' + 2D'^2)z = 24(y - x).$$
 (6)

- 6. (a) Compute the positive root, correct to 3-significant figures by the method of bisection, of the equation $x^4 + x^2 1 = 0$. (6)
 - (b) Find the value of the integral $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's $\frac{1}{3}$ rule. Hence, obtain the approximate value of p. (6)
 - (c) Use Euler's method with h = 0.2 to find the solution of the differential equation

$$\frac{dy}{dx} = x + y, y(0) = 0 \text{ in the range } 0 \le x \le 1.0$$
(8)

7. (a) Using the laws of Boolean Algebra, prove the following: (4+4=8)

(i)
$$(x+y) \cdot (x+y') \cdot (x'+z) = x \cdot z$$

(ii)
$$z \cdot (x + y) + x' \cdot z + y \cdot z' = y + z$$

(b) Convert the following numbers into the decimal number system: (3+3=6)

- (i) (10110101),
- (ii) (A1E2)₁₆
- (iii) (127.35)₈
- (c) Draw a circuit to realise the two input OR function and the two input AND function, using:

(3+3=6)

- (i) only the NOR gate
- (ii) only the NAND gates

8. (a) Prove that the Moment of Inertia of a uniform right circular solid cone of mass M, height h and base radius r, about a diameter of its base is $\frac{M}{20}(3r^2 + 2h^2)$. (7)

- (b) A rod of length 2a, is suspended by a string of length l, attached to one end; if the string and rod revolve about the vertical with uniform angular velocity and their inclination to the vertical be θ and ϕ respectively, show that $\frac{3l}{a} = \frac{(4 \tan \theta 3 \tan \phi) \sin \phi}{(\tan \phi \tan \theta) \sin \theta}$ (6)
- (c) Find the equation of motion of a compound pendulum using Hamilton's equation. (7)

* * * * * * *