MIZORAM PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATIONS FOR RECRUITMENT TO THE POST OF

GEOLOGIST JUNIOR UNDER COMMERCE & INDUSTRIES DEPARTMENT, GOVERNMENT OF MIZORAM, NOVEMBER, 2022

GEOLOGY PAPER - II

Time Allowed: 2 hours		Full Marks: 200
A	ll questions carry equal man Attempt all question	
1. The symmetry operation of	of center of symmetry is	
(a) Rotation	(b)	Inversion
(c) Reflection	(d)	Rotation + inversion
2. The molecular proportion	of elements that constitute Oli	vine is
(a) 2:1:4	(b)	1:2:3
(c) 4:2:1	(d)	3:1:2
3. The brilliant red of ruby is	s due to the presence of	
(a) Chromium	(b)	Manganese
(c) Copper	(d)	Vanadium
4. In orthorhombic system, be lattice at a distance equal to	. , , , , , , , , , , , , , , , , , , ,	duced by translating a primitive rectangular
(a) ½ c right, ½ b back	and $\frac{1}{2}$ a vertical (b)	½ c back, ½ b vertical and ½ a right
(c) $\frac{1}{2}$ c vertical, $\frac{1}{2}$ b rig	ght and $\frac{1}{2}$ a back (d)	½ c right, ½ b vertical and ½ a back
5. In crystallographic forms,	a single face with no geometri	cally equivalent face elsewhere is known as
(a) Sphenoid	(b)	Pinacoid
(c) Pedion	(d)	Dome
6. In X-Ray diffraction of cr	ystal using X-Ray Powder Di	iffractometer
(a) All possible diffracti	ions take place simultaneously	
(b) All possible reflection	ons from atomic planes take planes	ace simultaneously
(c) A polychromatic rac	diation source is used to strike	the powdered crystal
(d) The sample rotates to	though the angle 2q and the de	etector rotates through q
7. Which of the following me	ethod uses optic axis interferer	nce figure to determine 2V?
(a) Wright Method	(b)	Kamb's Method
(c) Tobi's Method	(d)	Mallard's Method
8. The retardation produced	by gypsum plate is	
(a) 230 nm	(b)	147 nm
(c) 550 nm	(d)	430 nm
9. Diamond is composed of	carbon that has a base-state el	ectron configuration of
(a) $1s^22s^22p^1$	(b)	$1s^22s^22p^2$

(d) $1s^22s^22p^4$

(c) $1s^22s^22p^3$

10. The	chemical formula of kaolinite is		
(a)	$Al_2Si_2O_5(OH)_4$	(b)	$Mg_3Si_4O_{10}(OH)_2$
(c)	$\text{Al}_2\text{Si}_4\text{O}_{10}(\text{OH})_2$	(d)	$KAl_2(AlSi_3O_{10})(OH)_2$
12. In th	e crystal structure of monticellite, M2 site is o	ccupi	ed by
(a)	Ca	(b)	Mg
(c)	Fe^{2+}	(d)	both Mg and Fe ²⁺
13. The	cosmic abundance of elements clearly indicated t	that the	e absolute abundances of elements depends on
(a)	Chemical properties of elements	(b)	The atomic number of elements
(c)	The atomic weight of elements	(d)	Nuclear stability of elements
14. Whi	ch one of the following statement is correct with	th refe	erence to mineral stability?
(a)	A stable mineral association is that which has circumstance.	the hi	ghest free energy possible under a particular
(b)	A mineral association is unstable when it is under specific conditions.	not t	he association with the highest free energy
(c)	A metastable association is one with more the which the rate of change to an association with		
(d)	Both (a) and (b).		
15. The Sun's	compositions of which one of the following me	eteorit	e best matches the composition of that of the
(a)	Ivuna	(b)	Urelites
(c)	Ataxites	(d)	Pallasites
		•	
16. Cho	ose the correct statement on rules and regulation	on of e	element distribution
16. Cho (a)			
	A minor element may substitute extensively radii is not more than 25%.	for m	ajor elements if the difference in their ionic abstitute for another even if their radii are
(a) (b)	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may	for m not su	ajor elements if the difference in their ionic abstitute for another even if their radii are ated by another substitution.
(a) (b)	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be com LIL elements are more concentrated in maf radii and low electric charge.	for m not supensation rational	ajor elements if the difference in their ionic abstitute for another even if their radii are ated by another substitution. Her than felsic rocks because of their large e series because their ionic size and higher
(a) (b) (c) (d) 17. Acce	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be com LIL elements are more concentrated in maf radii and low electric charge. The HFSE are concentrated in the felsic end	for mot supensatic rations in	ajor elements if the difference in their ionic substitute for another even if their radii are ated by another substitution. Her than felsic rocks because of their large e series because their ionic size and higher a silicate minerals difficult.
(a) (b) (c) (d) 17. Accorper of	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be com LIL elements are more concentrated in mar radii and low electric charge. The HFSE are concentrated in the felsic end charge make their substitution for any major is ording to pioneering worker on average mineral	for mot supensatic rations in	ajor elements if the difference in their ionic substitute for another even if their radii are ated by another substitution. Their than felsic rocks because of their large the series because their ionic size and higher a silicate minerals difficult.
(a) (b) (c) (d) 17. According per Grant (a)	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be come LIL elements are more concentrated in mafradii and low electric charge. The HFSE are concentrated in the felsic end charge make their substitution for any major is ording to pioneering worker on average mineral cent, the most abundant mineral is	not supensatic rations in logical	ajor elements if the difference in their ionic substitute for another even if their radii are ated by another substitution. There than felsic rocks because of their large the series because their ionic size and higher a silicate minerals difficult.
(a) (b) (c) (d) 17. According for (a) (c)	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be come LIL elements are more concentrated in man radii and low electric charge. The HFSE are concentrated in the felsic end charge make their substitution for any major is ording to pioneering worker on average mineral cent, the most abundant mineral is Quartz	not supensation rations in logical (b)	ajor elements if the difference in their ionic substitute for another even if their radii are ated by another substitution. The than felsic rocks because of their large the series because their ionic size and higher a silicate minerals difficult. The composition of the earth's crust in volume algorithms.
(a) (b) (c) (d) 17. Accorper (a) (c) 18. Duri (a)	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be come LIL elements are more concentrated in many radii and low electric charge. The HFSE are concentrated in the felsic end charge make their substitution for any major is cording to pioneering worker on average mineral cent, the most abundant mineral is Quartz Alkali feldspar ing the analysis of sample by ICPMS, the function of the function of the sample of the function of the fun	not supensation rational formations in the construction of the con	ajor elements if the difference in their ionic substitute for another even if their radii are ated by another substitution. The than felsic rocks because of their large the series because their ionic size and higher a silicate minerals difficult. The composition of the earth's crust in volume algorithms.
(a) (b) (c) (d) 17. Accorper (a) (c) 18. Duri (a) (b)	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be come LIL elements are more concentrated in man radii and low electric charge. The HFSE are concentrated in the felsic end charge make their substitution for any major is cording to pioneering worker on average mineral cent, the most abundant mineral is Quartz Alkali feldspar ling the analysis of sample by ICPMS, the function of the filter out larger droplets (>10 mm). to generate fine aerosol carrying the sample.	not supensation rational formations in the construction of the con	ajor elements if the difference in their ionic substitute for another even if their radii are ated by another substitution. The than felsic rocks because of their large the series because their ionic size and higher a silicate minerals difficult. The composition of the earth's crust in volume algorithms.
(a) (b) (c) (d) 17. Accorper (a) (c) 18. Duri (a) (b) (c)	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be come LIL elements are more concentrated in maferadii and low electric charge. The HFSE are concentrated in the felsic endecharge make their substitution for any major is cording to pioneering worker on average mineral cent, the most abundant mineral is Quartz Alkali feldspar Ing the analysis of sample by ICPMS, the function of the filter out larger droplets (>10 mm). To generate fine aerosol carrying the sample to volatilised the sample solution.	not supensation rational formations in the control of the control	ajor elements if the difference in their ionic substitute for another even if their radii are ated by another substitution. The than felsic rocks because of their large the series because their ionic size and higher a silicate minerals difficult. The composition of the earth's crust in volume algorithms.
(a) (b) (c) (d) 17. Accorper (a) (c) 18. Duri (a) (b) (c) (d)	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be come LIL elements are more concentrated in many radii and low electric charge. The HFSE are concentrated in the felsic end charge make their substitution for any major is cording to pioneering worker on average mineral cent, the most abundant mineral is Quartz Alkali feldspar ing the analysis of sample by ICPMS, the function of the filter out larger droplets (>10 mm). to generate fine aerosol carrying the sample to volatilised the sample solution. to dissociate and ionised the sample solution.	not supensation rations in the logical (b) (d) tion of	ajor elements if the difference in their ionic substitute for another even if their radii are ated by another substitution. There than felsic rocks because of their large the series because their ionic size and higher a silicate minerals difficult. The alternation of the earth's crust in volume and Plagioclase Micas for Meinhard nebuliser is
(a) (b) (c) (d) 17. Accorper (a) (c) 18. Duri (a) (b) (c) (d) 19. The	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be come LIL elements are more concentrated in maferadii and low electric charge. The HFSE are concentrated in the felsic endecharge make their substitution for any major is cording to pioneering worker on average mineral cent, the most abundant mineral is Quartz Alkali feldspar Ing the analysis of sample by ICPMS, the function of the filter out larger droplets (>10 mm). To generate fine aerosol carrying the sample to volatilised the sample solution.	not supensatic rational definitions in the logical (b) (d) the ration of the logical (b) (d) the rational definition of the logical (b) (d) the rational definition of the logical definition defin	ajor elements if the difference in their ionic substitute for another even if their radii are ated by another substitution. There than felsic rocks because of their large the series because their ionic size and higher a silicate minerals difficult. The composition of the earth's crust in volume all plagioclase Micas and Meinhard nebuliser is
(a) (b) (c) (d) 17. Accorper (a) (c) 18. Duri (a) (b) (c) (d) 19. The 86Sr (a)	A minor element may substitute extensively radii is not more than 25%. Ions whose charges differ by one unit may similar and the charge difference can be come LIL elements are more concentrated in many radii and low electric charge. The HFSE are concentrated in the felsic end charge make their substitution for any major is cording to pioneering worker on average mineral cent, the most abundant mineral is Quartz Alkali feldspar ling the analysis of sample by ICPMS, the function of the filter out larger droplets (>10 mm). to generate fine aerosol carrying the sample to volatilised the sample solution. to dissociate and ionised the sample solution isotopic analysis of a mineral indicated that the	not supensatic rations in logical (b) (d) tion of the value of \$87\$S (b)	ajor elements if the difference in their ionic substitute for another even if their radii are ated by another substitution. There than felsic rocks because of their large the series because their ionic size and higher a silicate minerals difficult. The composition of the earth's crust in volume all plagioclase Micas and Meinhard nebuliser is

		- 3 -		
20.	_	ration of elements in the outer part of the earth h begins with	n giv	es rise to the concept of geochemical cycle
	(a)	alteration and weathering of pre-existing rock	KS.	
	(b)	transportation and deposition of materials.		
		diagenesis and lithification to metamorphism.		
	` /	initial crystallization of magma.		
21.		important criteria for a magma to be called as p		ary magma is
		repeated appearance throughout geologic tim		
		occurrence even in small quantities with large	r bat	holiths.
	` ′	sparse distribution of emplacement. at least a small component in rock suites and	0000	aigtion
22	` ′	•		
22.		ies of mantle petrology from ultramafic xenolith semisolid.		essentially liquid.
	` /	essentially solid.	` ′	partially melted.
22	. ,	main mechanism of generating large volume of	` /	
23.		anomalous thermal perturbation of the geothe	_	ma in the mantie is
		lowering of the mantle solidus (and liquidus)		e addition of volatiles
	(c)	adiabatic decompression of mantle Lherzolite	_	o addition of volunes.
	` /	subduction processes.		
24.	Class	s III of the CIPW norm classification of igneou	ıs roc	cks is known as salfemic which has the salic
		mic ratio of		
	(a)	between 7 and 1.667.	(b)	between 1.667 and 0.60.
	(c)	between 0.60 and 0.143.	(d)	less than 0.143.
25.		ch of the following statement is correct in terms		-
	(a)	The conversion of An to Ab releases Ca ²⁺ and amphibole invite those ions.	A1 ³⁺	while changes in pyroxene and formation of
	(b)	The decrease in oxygen fugacity is marked be iron-bearing silicates.	y th	e formation of magnetite at the expense of
	(c)	The reaction series was established by Bower dry condition at low pressure.	n for	alkaline basaltic magma crystallizing under
	(d)	With decrease in temperature the Differentiation	n Ind	dex (D.I) of the reaction series also decreases.
26.	The g	given mineral reaction indicates which one of th	ne fo	llowing magmatic process?

 $2\text{CaCO}_3 + 2\text{Mg}_2\text{Si}_2\text{O}_6 + \text{KAlSi}_3\text{O}_8 \\ \longleftrightarrow \text{Mg}_2\text{SiO}_4 + 2\text{CaMgSi}_2\text{O}_6 + \text{KAlSi}_2\text{O}_6 + 2\text{CO}_2 \\ \text{Cal} \quad \text{En} \quad \text{Kfs} \quad \text{Fo} \quad \text{Di} \quad \text{Le}$

(a) Fractional crystallization.

(b) Magma assimilation.

(c) Magma mixing.

(d) Liquid immiscibility.

- 27. On commingling and reaching the same T, the viscosity of the silicic magma may be greater or less than that of the mafic one, depending upon the proportions of the two magmas. This point is called
 - (a) Homogenization of magma.

(b) Equilibrium crystallization.

(c) Ideal mixing.

- (d) Crossover of viscosity
- 28. A large-scale fractionation through crystal settling during crystallization are found in
 - (a) Stillwater Complex in southern Montana.
 - (b) Basalt-Rhyolite complex in Mt. McLoughlin in Oregon.
 - (c) Proterozoic of Kosterhavet National Park of the Koster Islands in Sweden.
 - (d) All of the above.

29. T	he spinifex texture in igneous rocks indicates		
((a) Slow cooling process.	(b)	Rapid cooling process.
((c) Secondary mineralization in void spaces.	(d)	Slow and steady crystallization.
p <u>y</u>	When the spaces between fine laths of plagioclase in groxene and olivine, and the fine laths swerve around a Pilotaxitic texture. (c) Ophitic texture.	und t	
(he minerals which involve in myrmekitic texture in (a) quartz and oligoclase. (c) microcline and albite.	ndica (b) (d)	
(s per IUGS classification scheme the mineral com (a) 10-90% orthopyroxene or clinopyroxene, <5 (b) 90-100% plagioclase with proxene and horn (c) 50-90% hornblende, 10-50% of pyroxene, <6 (d) 65-35% orthopyroxene, <5% hornblende or	% of blend	olivine. de up to 10%. plagioclse.
33. T	he characteristic mineral composition of sub-alum	ninou	s rocks are
	(a) Muscovite, corundum, almandine.(c) Pyroxene, olivine, melilite.	` '	Hornblende, pyroxene, biotite. Aegirine, riebeckite.
	he structurally controlled intrusions formed throug f folds rather than the limbs is called	gh mo	evement of magmas along the axial direction
	(a) Laccoliths.(c) Phacoliths.		Lopoliths. Flow banding or platy flow layers.
	binary system of Diopside-Anorthite, the inters		
(arves correspond to 58 wt.% diopside and 42 wt. (a) 1553 °C. (c) 1392 °C.		orthite. The eutectic temperature is 1445 °C. 1274 °C.
ar 0.	t 10^5 Pa (1 bar), diopside melts at 1665 K. If the nd 619.6 J mol ⁻¹ K ⁻¹ , respectively, and their 07609×10^{-3} m ³ mol ⁻¹ , calculate the melting poin	volu t at 2	mes are, respectively, 0.06609×10 ⁻³ and GPa (20 kb) using Clapeyron equation.
	(a) 1774 K.	(b)	1030 K.
	(c) 1652 K.	(d)	1895 K.
	the ophiolite suites, the lower most layers is usua	•	-
	(a) gabbroic cumulates.(c) foliated harzburgite.	` ′	sheeted dykes. plagiogranite.
	•		
(he characteristic(s) of intraplate oceanic islands is (a) tholeiitic and alkaline. (b) komatiitic in nature. (c) very low in concentrations of incompatible ed (d) the result of high degree of partial melting process. 	leme	nts compared to MORB.
(he occurrences of carbonatites in India are record (a) Andhra Pradesh, Gujarat, Rajasthan, Tamil N (b) Goa, Maharashtra, Madhya Pradesh, Sikkim	Vadu.	

(c) Karnataka, Nagaland, Osdhisa, Uttarakhand.

(d) Assam, Himachal Pradesh, Jamu & Kashmir, Utter Pradesh.

40. Kii	mberlite rocks are usually abnormally high in the	majo	or oxide weight percentage of
(a	A) Al_2O_3 , Fe_2O_3 and H_2O^2 .	(b)	Na ₂ O, FeO and K ₂ O.
(c	e) MgO, CaO and CO2.	(d)	TiO2, MnO and P ₂ O ₅ .
	nich one of the following is the correct arra tamorphism?	ngen	nent of rocks as per increasing grade of
(a	a) Slate-phyllite-granulite-amphibolite.	(b)	Phyllite-slate-amphibolite-granulite.
(c	c) Slate-phyllite-amphibolite-granulite.	(d)	Phyllite-slate-eclogite-granulite.
42. Me	etamorphic facies are defined by		
(a	a) the conditions of temperature and pressure.		
(b	a single dominant rock type.		
`	e) peculiar texture and structures of the rocks ty	ypes.	
(d	l) critical mineral assemblages.		
	e thermal or contact metamorphism is characteri		•
	a) High temperature, low pressure, low strain an		•
(b			<u>*</u>
`	e) High temperature, low pressure, variable stra		•
(d			•
	e appearance of orthopyroxene in clinopyroxene		•
`	a) eclogite facies.		amphibolite facies.
`	e) granulite facies.	` /	hornfels facies.
	nich one of the following is a characteristic miner		
`	a) kyanite.	` ′	sillimanite. andalusite.
`		` '	
	arge crystal which has grown in a metamorphic		
`	a) Porphyroblast. c) Phenoclast.	` ′	Xenoblast. Poikiloblast.
`		(u)	1 OIKHOUIAST.
	e diagnostic mineral in the blueschist facies is	(b)	zoisita
`	a) epidote. c) glaucophane.	(d)	zoisite. lawsonite.
·	, -	()	
	eclogite facies of metamorphism, which one of the sodic-plagioclase?	2 10110	owing minerals occurs as sourc phase instead
(a	a) Riebeckite	(b)	Jadeite.
(c	e) Actinolite.	(d)	Pigeonite.
49. In t	the triangular ACF diagram, the alphabet 'A' rep	reser	nts
(a	a) Al_2O_3	(b)	Al_2O_3 - (FeO + MnO)
(0	c) $Al_2O_3 - (Na_2O + CaO + K_2O)$	(d)	$Al_2O_3 + Fe_2O_3 - (Na_2O + K_2O)$
	nich of the following is the correct sequence o tamorphism?	fsuc	cession of index minerals with increasing
(a	a) chlorite, biotite, almandine, staurolite, kyanite	, silli	manite
(b	o) chlorite, , sillimanite, biotite, staurolite, alman	dine,	kyanite
(c	e) sillimanite, chlorite, biotite, staurolite, almand	line, k	xyanite,

(d) kyanite, staurolite, biotite, almandine, sillimanite, chlorite

51.	Mign	natite is formed by geodynamic process which	invol	ves
	(a)	Comingling of magma.	(b)	Density inversion.
	(c)	Shear stress.	(d)	All of the above.
52.		ch one of the following is the pioneering workenblages, rock compositions and P-T condition		_
	(a)	C. E. Tilley	(b)	G. Barrow
	(c)	P. Eskola	(d)	V. M. Goldschmidt
53.		anderstanding of metamorphic mineral assemblitions give rise to the concept of	olage	s and chemical equilibrium under same P-T
	(a)	isograd	(b)	metamorphic zones
	(c)	metamorphic grades	(d)	metamorphic facies
54.		nost prominent textural feature exhibited by rered to as	egion	ally metamorphosed rocks is a planer fabric
	(a)	crenulation cleavage	(b)	slaty cleavage
	(c)	foliation	(d)	lineation
55.	Fold	patterns preserved as inclusion trails within p	orphy	roblasts are known as
	(a)	syn-tectonic folds	(b)	post-tectonic folds
	(c)	micro-seismites	(d)	helicitic folds
56.	Whic	ch one of the following is metamorphic texture	found	d in shear zones?
	(a)	restite	(b)	fluxion
	(c)	strain-slip cleavage	(d)	beards
57.	The r	eaction involving 'Tremolite-out' in Lherzolit	e asse	emblage in the CMSH system is represented
	(a)	2Tremolite + 2Forsterite = 5Enstatite + 4Dio	psid	$e + 2H_2O$
	(b)	4 Spinel + 2 Tremolite = 6 Forsterite + Enstati	te + 4	Anorthite + 2H ₂ O
	(c)	Antigorite + 8Diopside = 18Forsterite + 4Tr	emol	ite $+27H_2O$
	(d)	both (a) and (b)		
58.		Eclogite facies comprises the widest P=T region from	n of a	ny of the metamorphic facies fields with a T-
	(a)	300 to 900 °C	(b)	500 to 1200 °C
	(c)	420 to 1100 °C	(d)	400 to 1000 °C
59.	The t	ransition from Amphibolite to Granulite facies	s is re	presented by the mineral reaction
	(a)	4Tremolite + 3Anorthite = 3Pyrope + 11Dic	pside	$e + 7Quartz + 4H_2O$
	(b)	7Tremolite = 3 Anthophyllite + 14 Di + 4 Qua	rtz+	$4H_2O$
	(c)	Tremolite + Grossular = 4Clinoproxene + Original Control of the	rthop	roxene + Anorthite + H ₂ O
	(d)	4Enstatite + Anorthite = Diopside + Quartz + Control +	+ Pyr	ope
60.		ng metamorphism of pelitic rocks, the reaction [ASH system can be represented by	n of 1	minerals with excess of quartz and water in
	(a)	2Almandine + 2Aluminosilicate + 5Quartz +	nH ₂ (O = 3Cordierite
		Cordierite + Garnet + Sillimanite = Spinel +	_	
	(c)	Orthopyroxene + Sillimanite + Quartz = Cor	dierit	re + Garnet
	(d)	Cordierite + Sillimanite + K-feldspar + Quar	tz = 0	Osumilite + Orthopyroxene

61.	In see	dimentary rocks, the authigenic components a	re tho	ose
	(a)	formed during diagenesis.	(b)	directly derived from the provenance.
	(c)	economically mineable components.	(d)	containing trace fossils.
62.		izoram, the oldest stratigraphic horizon is restones are typically of	pres	ented by Oligocene Barail Group, and the
	(a)	Greywacke.	(b)	Arkose.
	(c)	Quartz arenite.	(d)	Litharenite.
63.	In U	lden-Wentworth size classes, ö values of shale	e rang	ges between
	(a)	9 to 14	(b)	8 to 8.
	(c)	4 to 1.0.	(d)	0.75 to 0.0.
64.	Whic	ch of the following is the erosional sedimentary	struc	eture?
	(a)	Flute marks.	(b)	convolute lamination.
	(c)	Parting lineation.	(d)	flame structures.
65.	Wave	e dominated delta has one of the following seq	uenc	e characteristic
	(a)	Normal grading.	(b)	Reverse grading.
	(c)	Multiple grading.	(d)	Massive bedding.
66.	The a	alluvial depositional feature which are related t	to vei	rtical accretionary deposits are
	(a)	point bars.	(b)	channel lag deposits.
	(c)	channel bar deposits.	(d)	levee deposits.
67.	In the	e fluvial cycle, the maturity stage is indicated b	y	
	(a)	existence of maximum possible relief.		
	(b)	broad and poorly defined stream divides.		
	(c)	presence of lakes, swamps or marshes on the	floo	d-plains.
	(d)	dominant mass wasting and chemical denudat	ion ii	n fluvial process.
68.	Sedin	mentary structures having directional features he	lp in	Paleocurrent analysis which are presented as
	(a)	cross-stratification.	(b)	asymmetric ripples.
	(c)	groove marks.	(d)	rose diagram.
69.	The i	dealized Bauma sequence is characterised by		
	(a)	normal grading at the bottom followed by pa lamination, parallel lamination and shale at th		
	(b)	reverse grading at the bottom followed by rip	ple m	narks and parallel lamination.
	(c)	normal grading at the bottom followed by ripp	ole m	arks and parallel lamination.
	(d)	reverse grading at the bottom followed curr lamination and shale at the top.	ent ri	ipples and convolute laminations, paralle
70.	Whic	ch one of the following is not biogenic structure	?	
	(a)	liesegang.	(b)	oncolites.
	(c)	reefs.	(d)	Cruziana.
71.	Acco	ording to Folk and Ward (1957), fine-skewed s	sedin	nents fall between ö values of
		0.1 to 0.1.		1.0 to 0.3
	(c)	0.3 to 0.1	(b)	0.1 to 0.3

72.	The ı	ultimate goal of sedimentary basin analysis is		
	(a)	to find out stages of basin evolution and arch	itectu	re.
	(b)	to unravel complete history and hydrocarbor	n pros	pects.
	(c)	to investigate nature of sediment fills and feas	sibilit	y of oil and gas deposits.
	(d)	to determine basin floor patterns, paleo-hydra	aulics	s and maturation of sediments.
73.		nistory of the Appalachian Basin in terms sedin ime scale of basin evolution, the rate of sedime		
	(a)	Permian-Pennsylvanian	(b)	Devonian
	(c)	Late Silurian	(d)	Early Canbrian
74.	The I	ndian example of a type of remnant ocean basin	s und	er the tectonic class of Convergent Settings is
	(a)	Cuddapah Basin	(b)	Cambay Basin
	(c)	Bay of Bengal Basin	(d)	Vindhyan Basin
75.	Sea-l	evel fall results in a Forced regression, the res	ultan	t sediment pattern is
	(a)	aggradational	(b)	retrogradational, with erosional surfaces
	(c)	retrogradational, without erosional surfaces	(d)	progradational
76.	Diag	enesis is commonly regarded to take place at		
	(a)	temperature 180-200 °C and pressure below	w ~4]	kb
	(b)	temperature below 230 °C and pressure below	ow ~	6 kb
	(c)	temperature below 200-250 °C and pressur	e belo	ow ∼5 kb
	(d)	temperature below 150-180 °C and pressur	e belo	ow ∼3 kb
77.		earliest stage of diagenesis which takes plac sitional environment is called	ee at v	very shallow depth under the influence of
	(a)	telogenesis	(b)	eogenesis
	(c)	mesogenesis	(d)	protogenesis
78.	-	process of diagenesis in sandstone and shale re oclase into	esult i	in the transformation of K-feldspar and Ca-
	(a)	illite	(b)	chlorite
	(c)	kaolinite	(d)	smectite
79.		nestone, the ionic substitution of Mg^{2+} for Ca^{2+} te is called Mg -calcite when the mineral contains		monly takes place in Calcite mineral and the
	(a)	less than 4 mol% MgCO ₃	(b)	more than ~4 mol% MgCO ₃
	(c)	approximately of 4 mol% MgCO ₃	(d)	more than 35 mol% MgCO ₃
80.	The s	structure in limestone with large-scale, mound-led	like oı	elens-like mass built by sedentary organisms
	(a)	bioherms.	(b)	stylolites.
	(c)	stromatactis.	(d)	tepee structure.
81.	In the	e concept of environmental geology, the Gaia	Нуро	thesis is related to
	(a)	Concept I.	(b)	Concept II.
	(c)	Concept III.	(d)	Concept IV and V.
82.	In the	e current seismic hazard map of India, Mizorar	m fall	s under
	(a)	Zone II.	(b)	Zone III.
	(c)	Zone IV.	(d)	Zone V.

83.	The i	mmediate cause of landslide in Mizoram and oth ate is	er hil	ly sedimentary terrains prevailed by monsoon
	(a)	geological structures.	(b)	rock types present.
	(c)	heavy rainfall.	(d)	uncontrolled slope modification and dumping.
84.		e concept of ecosystem, an orderly and som ystem evolves is called	etim	es not-so-orderly change of species as an
	(a)	flow of energy.	(b)	recycling of nutrients.
	(c)	succession.	(d)	structure.
85.	atmo	to absorption energy radiating from the earth sphere of the earth gets warmer by about		urface by the greenhouse gases, the lower
	` '	40 °C than it would be if all radiations escape		
		35 °C than it would be if all radiations escape		
	` '	30 °C than it would be if all radiations escape		
	(d)	25 °C than it would be if all radiations escape	ed.	
86.	Duri	ng earthquake incidences, damage to structure	s and	buildings are caused by the
	(a)	P wave.	(b)	S wave.
	(c)	Surface waves.	(d)	Rayleigh wave.
87.	base	noment magnitude of an earthquake is a meast d upon		
		damage caused by an earthquake.	` ′	amount of movement or fault slip.
	(c)	human perception of seismic shock.	(d)	the potential energy of crustal segment.
88.	few i	n earthquake is felt by all, many frightened and nstances of fallen plaster, what will be the Mer	calli	Intensity Scale?
	(a)		` /	VI.
	(c)	VII.	(d)	VIII.
89.		d stage is the height at which a river begins to over best flood-monitoring effort in real time?		_
	(a)	monitoring of amount of discharge required fo and making data available to the public.	r a ri	ver to leave its channel on time interval basis
	` '	construction of check dams and flood barriers a	_	
	. ,	installation of hundreds of automatic gauge in basis and making the data available over inter	rnet.	
	(d)	deployment of disaster response teams with comp	lete se	et of equipments during flood and rainy seasons.
90.	indic	maximum yearly discharge over a 102-year per ated that the 1999 event of 70,600ft ³ /sec score and will be		
	(a)	202 years	(b)	103 years
		102 years	` ′	1.2 years.
91.	` ′	given segment of shoreline, the total volume	` /	•
· 10		s. The "beach budget" is in deficit and coastal		
		Influx exceeds losses.		there is a sea level fall.
	(c)	Dam is constructed in the river mouth.	(d)	Both (a) and (b)

92.		current practice of uncontrolled solid earth- ediately led to	wast	te disposal and dumping in Mizoram will
	(a) groundwater and spring water pollution.			
	` '	(b) siltation and disturbance in aquatic ecosystem.		
		soil pollution and soil quality degradation.		
	(d)	disturbance in bio-geochemical cycles.		
93.		adays, water is parts of commodity which can b		_
		voirs are essential part of water management when fragmentation of ecosystem.		loss of cultural and biological resources.
	` '	degradation of water qualities.		both (a) and (b).
94	` '	tai is a chronic disease which claimed many liv	` /	
/ ₹.		related to ignored mine waste disposal of mini		
		lead, zinc and cadmium.		copper, molybdenum and boron.
	(c)	uranium, sulphur and chromium.	(d)	thorium, osmium and mercury.
95.	Acid	mine drainage is a severe environmental issue	relat	red to
	(a)	all types of abandoned open caste mining irre	espec	etive of type of remnant ores present.
	` '	Acidic leachate, rich in heavy metals, that dra		
		the release of acid waste from mining equipm		_
	` /	controlled disposal of acids evolved from rea		
96.		ch one of the following is the most abundant air	-	_
		CO ₂	` ′	CO
		NO_x		SO ₂
97.		most important strategic methods to solve f lopment and technology may be	or so	olid waste problem in current scenario of
	(a)	Source reduction.	(b)	Recycling or reuse.
	(c)	Incineration.	(d)	Landfilling.
98.	One	of the most ideal locations for disposal strategie	sofh	igh-level waste from nuclear power plants is
	(a)	Stored in underground storage tanks made or	fstee	el and concrete.
	(b)	Burial in very deep geologic formation.		
	` '	Permanently isolate place from the biosphere		1:11 11 1
	, ,	Geologically stable area where geologic hazar		
99.		ch one of the following is not related to global of	lıma	te change?
	` '	General Circulation Models. Burial in very deep geologic formation.		
		Permanently isolate place from the biosphere		
		Geologically stable area where geologic hazar		re highly unlikely
100		ending on the rate at which humans continue to		
100.	-	I on Climate Change (IPCC) reports that by 2100		
		ewhere between	J	
	` '	1.2 and 3.1 °F	` ′	2.2 and 5.1 °F
	(c)	3.2 and 7.1 °F	(d)	5.2 and 9.1 °F