CSM : 22

MATHEMATICS
 PAPER - II

Time Allowed : 3 hours
Full Marks : 100
Marks for each question is indicated against it.
Attempt any 5 (five) questions taking not more than 3 (three) questions from each Part.

PART - A

1. (a) Prove that a field is an integral domain. Is the converse true? Justify your answer. (10)
(b) Let R be a commulative ring and S an ideal of R . Prove that the ring of residue classes R / S is an integral domain if and only if S is a prime ideal.
2. (a) Show that the sequence of functions $\left\{f_{n}(x)\right\}$, where $f_{n}(x)=\mathrm{e}^{-\mathrm{nx}}$ is pointwise but not uniformly convergent in $[0, \infty)$. Also show that the convergence is uniform in $[k, \infty)$, $k>0$.
(b) Check the convergence of the integral
$\int_{0}^{1} \frac{d x}{\sqrt{x(1-x)}}$
3. (a) If $f(z)$ is an analytical function of z and $f^{\prime}(z)$ is continuous at each point within and on a closed contour C , then prove that $\int_{C} f(z) d z=0$.
(b) Apply the calculus of residues to prove that
$\int_{0}^{\pi} \frac{1+2 \cos \theta}{(5+4 \cos \theta)} d \theta=0$
(c) If $f(z)$ has a pole at $z=a$, then prove $|f(z)| \rightarrow \infty$ as $x \rightarrow a$
4. (a) Solve, by Simplex Method, the following L.P.P.:

Maxz $=3 x_{1}+5 x_{2}+4 x_{3}$ subject to the constraints:
$2 x_{1}+3 x_{2} \leq 8$
$2 x_{2}+5 x_{3} \leq 10$
$3 x_{1}+2 x_{2}+4 x_{3} \leq 15$
and $x_{1}, x_{2}, x_{3} \geq 0$
(b) Use duality to solve the LPP:

Min. $z=3 x_{1}+x_{2}$ subject to
$2 x_{1}+3 x_{2} \geq 2$
$x_{1}+x_{2} \geq 1$
and $x_{1}, x_{2} \geq 0$

PART - B

5. (a) Form a partial differential equation by eliminating the arbitrary function ϕ from $\phi\left(x+y+z, x^{2}+y^{2}-z^{2}\right)=0$.
(b) Solve: $(m z-n y) d x+(n x-l z) d y=l y-m x$.
(c) Solve $s y-2 x r-2 p=6 x y$
6. (a) Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$
by taking 7 ordinates at $x=0,1 / 6,2 / 6,3 / 6,4 / 6,5 / 6,6 / 6$.
Here $h=1 / 6$.
(b) Find by Newton-Raphson's method the real root of $2 x-3 \sin x-5=0$.
7. (a) Show that
(i) $(176)_{8}=(126)_{10}$
(ii) $(17 A B)_{10}=(6059)_{10}$
(b) Convert the following binary numbers to octal and hexadecimal form:
(i) 110101
(ii) 101111001
(iii) 100110011010
(c) Convert the decimal number 3.248×10^{4} to a single-precision floating point binary number.
8. (a) Use Hamilton's equations, to find the equationof motion of the simple pendulum.
(b) Find the moment of inertia of the triangle ABC about a perpendicular to the plane through A.
