PHYSICS PAPER - II

Time Allowed: 3 hours Full Marks: 100

Marks for each question is indicated against it.

Attempt <u>any 5 (five)</u> questions taking not more than 3 (three) questions from each Part.

PART - A

- (a) Explain the concept of wave particle duality. State de-Broglie hypothesis of matter waves.
 Why we cannot observe de-Brogile wavelength associated with macroscopic objects?
 (3+3+3=9)
 - (b) State Heisenberg's uncertainty principle. Describe one experiment to illustrate the validity of this principle. (2+4=6)
 - (c) If the position of a particle is determined within 0.05 mm, What will be the uncertainty in its momentum? (5)
- 2. (a) What is an operator in quantum mechanics? Write the operators for linear momentum and kinetic energy. (2)
 - (b) For a particle confined in a one-diamensional box: (12)
 - (i) Show that the wave functions of two different states are orthonormal.
 - (ii) Discuss the zero-point energy
 - (iii) Obtain the expectation values for x and p_x .
 - (c) Show that $[\hat{x}, \hat{p}_x] = i\hbar$
- 3. (a) Describe normal and anomalous Zeeman effect. How was the degeneracy of Hydrogen atom explained using Zeeman effect? (8)
 - (b) Using Pauli spin matrices prove that (8)
 - (i) $\sigma_x \sigma_y + \sigma_y \sigma_x = 0$
 - (ii) $\sigma_+ \sigma_- = 2(1 + \sigma_z)$
 - (c) Show that Pauli Spin Matrices anti-commutes each other. (4)
- 4. (a) Discuss the vibrational spectra of a molecule treating it as an anharmonic oscillator. (12)
 - (b) In observing the Raman spectra of a sample using an excitation line at 3637 Å, one observes a Stokes line at 3980 Å. Deduce the Raman shift? (8)

PART - B

- 5. (a) Describe the various contributions to the binding energy of a nucleus, and hence obtain the semi-empirical mass formula for the mass of a nucleus as a function of A and Z. Discuss its application in predicting the stability of a nuclei against beta decay. (7+4=11)
 - (b) Discuss Meson theory of nuclear forces. (4)
 - (c) Calculate the nuclear radii for ^{14}N , ^{56}Fe . Given = $R_0 = 1.2$ Femi. (5)
- 6. What are quarks? Give the charge and quantum number associated with each quark. Describe the composition of hadrons according to quark model. (3+3+5=11)
 - (b) Identify the following interaction from the conservation laws:

$$\sum^{0} \rightarrow \Lambda^{0} + \gamma \quad \text{(life time } \leq 10^{-14} \text{s)}$$

- (c) Construct proton and neutron from their quark content? (5)
- 7. (a) Show that the reciprocal lattice for a 'bcc' lattice is a 'fcc' structure. (8)
 - (b) Deduce Miller indices of the close packed plane of atoms in the 'fcc' lattice. (6)
 - (c) What is Debye temperature? (6)
- **8.** (a) Implement the Boolean function $X = AB + \overline{A}C$ using NAND gates. (10)
 - (b) Calculate the pinch-off voltage for nn-channel silicon FET with a channel width of 6×10^{-4} cm⁻³. Given that dieletric constant of silicon is 12. (10)

* * * * * * *