CSM : 22

PHYSICS

PAPER - I

Time Allowed : 3 hours

Full Marks : 100

Marks for each question is indicated against it. Attempt <u>any 5 (five)</u> questions taking not more than 3 (three) questions from each Part.

PART - A

1.	(a)	What is a central force? Give two examples of central force. (4)
	(b)	Show that the angular momentum (\vec{L}) of a particle in central force field is a constant of
		motion. (8)
	(c)	Discuss the motion of a particle when the central force obeys inverse square law, in case of repulsive as well as attractive forces. (8)
2.	(a)	Define the terms moment of inertia and radius of gyration. What is the physical significance of moment of inertia? (1+1+2=4)
	(b)	Derive the equations for the motion of a body rotating with a constant angular acceleration. (8)
	(c)	What is gravitational self-energy of a body? Obtain an expression for it for a uniform solid sphere. (3+5=8)
3.	(a)	A reference frame S' moves with respect to rest frame S with a uniform velocity 'v' parallel to x-direction. Show from Lorentz transformation that the two events simultaneous $(t_1 = t_2)$
		at different positions $(x_1 \neq x_2)$ in frame S are not in general simultaneous in S' frame. (8)
	(b)	The mean life of $p - meson$ is 2×10^{-8} seconds. Calculate the mean life of a meson moving with a velocity of 0.8c, where c is the velocity of light. (8)
	(c)	A particle travelling with velocity 0.8c emits a photon in the direction of motion. What will be the velocity of a photon for an observer on the ground? (4)
4.	(a)	State the drawbacks of Einstein model of specific heat. Derive an expression for lattice heat capacity following Debye model. Discuss the high and low temperature limits of Debye's T^3 law. (2+6+4=12)
	(b)	What is adiabatic demagnetisation? Using Maxwell's thermodynamical relations obtain an expression for cooling produced in adiabatic demagnetisation of a paramagnetic salt.

(1+7=8)

PART - B

5.	(a)	Define simple harmonic motion. Derive a general differential equation of motion and obtain its solutions. Show that for a body executing simple harmonic motion the acceleration leads the velocity by $p/2$ and displacement by a phase angle of p . (2+6+4=12)
	(b)	What do you mean by group and phase velocity? Establish the relation between them. $(1+1+2=4)$
	(c)	Explain the phenomena of refraction from Huygen's principle. (4)
6.	(a)	Discuss two characteristics of Laser light; i.e., spatial and temporal coherence. Describe with a neat sketch the construction and working of He-Ne laser. (6+4=10)
	(b)	Explain the terms 'stimulated emission' and 'spontaneous emission' giving their transition probabilities. What are Einstein A and B coefficients? (2+2+2=6)
	(c)	Why two-level laser system cannot work? What is the minimum number of energy levelsrequired for Laser operation?(3+1=4)
7.	(a)	Using Biot-Savart's law, find the force between two long straight conductors carrying current. (8)
	(b)	A solenoid of length 20 cms and radius 2 cms is closely wound to 200 turns. Calculate the field at the centre of one end of the solenoid if a current of 5 amps flow through the windings. (6)
	(c)	What are series and parallel resonance circuits? What are they used for? (6)
8.	(a)	Using Planck's radiation law, deduce Wein's displacement law. How does this law enable one to estimate the surface temperature of the sun? (10)
	(b)	Using Ampere's law and continuity equation, show that the divergence of the total current density is zero. (10)

* * * * * * *