
MATHEMATICS

PAPER - I

Time Allowed : 3 hours Full Marks : 100

Marks for each question is indicated against it.
Attempt any 5 (five) questions taking not more than 3 (three) questions from each Part.

PART - A

1. (a) Let A and B be subspaces of a finite dimensional vector space V over a field K. Then,
prove that dim(A+B) = dim A + dim B - dim (AB). (10)

(b) Let 
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2. (a) Prove that the function f defined by
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has discontinuities at 1x   . (4)

(b) State and prove Cauchy’s Mean Value Theorem. (2+6=8)

(c) Find the asymptotes of  xy2 - y2 - x3 = 0. (4)

(d) Evaluate  
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3. (a) Evaluate any two of the following: (3×2=6)
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(b) Evaluate :  
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(c) Show that 
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(d) Examine the convergence of  2
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4. (a) Find the shortest distance between the lines
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 

 
 and 
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.

Also find the equation of shortest distance. (6+2=8)

(b) Find the equation of the plane which passes through the line of intersection of the planes
2x 3y + 4z = 0 and 4x + y 2z = 8, and perpendicular to the plane x + y + z = 9. (6)

(c) Prove that the circles x2 + y2 + z2  2x + 3y + 4z 5 = 0, 5y + 6z + 1 = 0 and

x2 + y2 + z2  3x 4y + 5z 6 = 0, x + 2y 7z = 0 lie on the same sphere and find its
equation. (6)

PART - B

5. (a) Find the orthogonal trajectories of the family of the curves 
2 2
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1,

x y
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 
 where

l is the parameter. (7)

(b) Solve 2 2 2y px a p b   (6)

(c) Solve 
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6. (a) If a be the amplitude and T be the period of a particle executing S. H. M. in a straight
line, show that the time taken by the particle to travel a distance  x  from the centre of

force is 
1sin
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 and the velocity in that position is 
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T


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(b) A heavy particle of weight W, attached to a fixed point by a light inextensible string,
describes a circle in a vertical plane. The tension of the string has values mW and nW
respectively, when the particle is at the highest and the lowest points of depth. Show that
n = m + 6. (8)

(c) A ball is projected so as to just clear two walls, the first of height a at a distance b from
the point of projection and the second of height b and at a distance a from the point of

projection. Show that the range on the horizontal plane is 
2 2a ab b
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 and the angle of

projection exceeds tan-13. (6)
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7. (a) A string of length a forms the shorter diagonal of a rhombus of four uniform rods, each of
length b and weight W, which are hinged together. If one of the rods be supported on a

horizontal position, prove that tension of the string is 
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
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(b) A body, consisting of a cone and a hemisphere on the same base, rests on a rough horizontal
table, the hemisphere being in contact with the table. Show that the greatest height of the
cone, so that equilibrium may be stable, is 3  times the radius of the hemisphere. (10)

8. (a) Evaluate the directional derivative of the function f = x2  y2 + 2z2  at the point P(1, 2, 3)
in the direction of the line PQ where Q has co-ordinates (5, 0, 4). (7)

(b) Show that the vector f = (sin y + z)i + (x cos y z)j + (x y)k is irrotational. (7)

(c) Evaluate by Stocke’s theorem  2x

c

e dx ydy dz   where C is the curve x2 + y2 = 4,

z = 2. (6)
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