CSM : 22

MATHEMATICS
 PAPER - I

Time Allowed : 3 hours
Full Marks : 100
Marks for each question is indicated against it.
Attempt any 5 (five) questions taking not more than 3 (three) questions from each Part.

PART - A

1. (a) Let A and B be subspaces of a finite dimensional vector space V over a field K. Then, prove that $\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B-\operatorname{dim}(A \cap B)$.
(b) Let $A=\left(\begin{array}{ccc}1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3\end{array}\right)$. Find a matrix P such that $P^{-1} A P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$.
2. (a) Prove that the function f defined by
$f(x)=\left\{\begin{array}{l}0 \text { for } x^{2}>1 \\ 1 \text { for } x^{2}<1 \\ \frac{1}{2} \text { for } x^{2}=1\end{array}\right.$
has discontinuities at $x= \pm 1$.
(b) State and prove Cauchy's Mean Value Theorem.
(c) Find the asymptotes of $x y^{2}-y^{2}-x^{3}=0$.
(d) Evaluate $\lim _{x \rightarrow 0}(\sin x)^{2 \tan x}$.
3. (a) Evaluate any two of the following:
(i) $\int_{0}^{\pi / 2} \frac{d x}{4+5 \cos x}$
(ii) $\int \frac{d x}{9 x^{2}-12 x+8}$
(iii) $\int \frac{(x-1)}{(x-2)(x-3)} d x$
(b) Evaluate : $\lim _{n \rightarrow 0}\left[\frac{(n+1)(n+2)(n+3) \ldots \ldots \ldots .(n+n)}{n^{n}}\right]^{1 / n}$
(c) Show that $\int_{0}^{\pi} \log (1+\cos x) d x=\pi \log \left(\frac{1}{2}\right)$
(d) Examine the convergence of $\int_{0}^{\infty} \frac{d x}{1+x^{2}}$
4. (a) Find the shortest distance between the lines
$\frac{x-3}{-3}=\frac{y-8}{1}=\frac{z-3}{-1}$ and $\frac{x+3}{3}=\frac{y+7}{-2}=\frac{z-6}{-4}$.
Also find the equation of shortest distance.
(b) Find the equation of the plane which passes through the line of intersection of the planes $2 x-3 y+4 z=0$ and $4 x+y-2 z=8$, and perpendicular to the plane $x+y+z=9$. (6)
(c) Prove that the circles $x^{2}+y^{2}+z^{2}-2 x+3 y+4 z-5=0,5 y+6 z+1=0$ and $x^{2}+y^{2}+z^{2}-3 x-4 y+5 z-6=0, x+2 y-7 z=0$ lie on the same sphere and find its equation.

PART - B

5. (a) Find the orthogonal trajectories of the family of the curves $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1$, where l is the parameter.
(b) Solve $y=p x+\sqrt{a^{2} p^{2}+b^{2}}$
(c) Solve $\frac{d^{2} y}{d x^{2}}+16 y=1, y(0)=1, y^{\prime}(0)=2$
6. (a) If a be the amplitude and T be the period of a particle executing S. H. M. in a straight line, show that the time taken by the particle to travel a distance x from the centre of force is $\frac{T}{2 \pi} \sin ^{-1}\left(\frac{x}{a}\right)$ and the velocity in that position is $\frac{2 \pi}{T} \sqrt{a^{2}-x^{2}}$.
(b) A heavy particle of weight W, attached to a fixed point by a light inextensible string, describes a circle in a vertical plane. The tension of the string has values $m W$ and $n W$ respectively, when the particle is at the highest and the lowest points of depth. Show that $n=m+6$.
(c) A ball is projected so as to just clear two walls, the first of height a at a distance b from the point of projection and the second of height b and at a distance a from the point of projection. Show that the range on the horizontal plane is $\frac{a^{2}+a b+b^{2}}{a+b}$ and the angle of projection exceeds $\tan ^{-1} 3$.
7. (a) A string of length a forms the shorter diagonal of a rhombus of four uniform rods, each of length b and weight W, which are hinged together. If one of the rods be supported on a horizontal position, prove that tension of the string is $\frac{2 W\left(2 b^{2}-a^{2}\right)}{b \sqrt{4 b^{2}-a^{2}}}$.
(b) A body, consisting of a cone and a hemisphere on the same base, rests on a rough horizontal table, the hemisphere being in contact with the table. Show that the greatest height of the cone, so that equilibrium may be stable, is $\sqrt{3}$ times the radius of the hemisphere. (10)
8. (a) Evaluate the directional derivative of the function $\mathrm{f}=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line $P Q$ where Q has co-ordinates $(5,0,4)$.
(b) Show that the vector $\mathbf{f}=(\sin y+z) \mathbf{i}+(x \cos y-z) \mathbf{j}+(x-y) \mathbf{k}$ is irrotational.
(c) Evaluate by Stocke's theorem $\int_{c}\left(e^{x} d x+2 y d y-d z\right)$ where C is the curve $x^{2}+y^{2}=4$, $z=2$.
