MIZORAM PUBLIC SERVICE COMMISSION

TECHNICAL COMPETITIVE EXAMINATIONS FOR RECRUITMENT TO THE POST OF JUNIOR ENGINEER UNDER AGRICULTURE DEPARTMENT (CROP HUSBANDRY), GOVERNMENT OF MIZORAM. MARCH-2020

TECHNICAL PAPER - I

ime Allov	ved: 2 hours		Full Marks : 150
	Attempt of	all question	S.
	All questions carry eq	ual marks (of two (2) each
1. Irriga	ation may be defined as the process of ar	tificially su	oplying water to soil for
•	Wetting land	• •	flooding land
(c)	Moisturing land	(d)	Raising crops
2. Ferti	gation is a process in irrigat	ion.	
	Sprinkler		Drip
(c)	Surface	(d)	Well
3. A sys	stem of rotational water allocation system	n which can	fulfil the requirement of equality is call
(a)	Shejpali system	(b)	Block system
(c)	Warabandi system	(d)	Localised system
4. Roug	hness coefficient (h) of the channel linir	ng for concre	ete in Manning's formula is-
(a)	0.014 - 0.016	(b)	0.017 - 0.030
(c)	0.030 - 0.033	(d)	0.040 - 0.044
	oss-sectional area of channel is 2.0sqm, varrying capacity Q will be—	vetted perin	neter is 3m and has a velocity of 0.20 m/sec,
	$Q = 0.40 \text{ m}^3/\text{sec}$	(b)	$Q = 4.00 \text{ m}^3/\text{sec}$
(c)	$Q = 0.10 \text{ m}^3/\text{sec}$	(d)	$Q = 10.00 \text{ m}^3/\text{sec}$
6. The 1	naximum permissible velocity in Boulde	er lining for	irrigation channel as per Indian Standards is
(a)	1.0 m/sec	(b)	1.5 m/sec
(c)	2.0 m/sec	(d)	2.5 m/sec
	t is the minimum value of free-board for 10 cumecs as per specified by BIS code		Branch Lined canals if the discharge is more
(a)	0.75	(b)	0.65
(c)	0.55	(d)	0.45
8. Adva	antage of lined channel is-		
(a)	Decreases seepage losses	(b)	Increase in channel capacity
(c)	Provide safety against breaks	(d)	All of these
	ed channels, stability againsting carried in a high velocity flow.	is generally	not a consideration unless abrasive material

(b) Seepage losses(d) Earthquake

(a) Flood

(c) Erosion

10. Pipes and drains act as open channels when flow	ring-		
(a) Partially full	(b) Full capacity		
(c) Both (a) & (b)	(d) None of these		
11. By Chezy's formula, Velocity of flow (v) in a cha	nnel is		
(a) $v = C\sqrt{RS}$ where C is constant, R is wetter	d perimeter and S is hydraulic slope		
(b) $V = C\sqrt{RS}$ where C is constant, R is hydra	ulic radius and S is slope percentage		
(c) $V = C\sqrt{RS}$ where C is constant, R is hydra	ulic radius and S is hydraulic slope		
(d) $V = C\sqrt{RS}$ where C is constant, R is rough	ness coefficient and S is hydraulic slope		
12. Calculate the mean hydraulic radius for a channel velocity and 60 m of wetted perimeter.	el having 30 m ² cross sectional area, 2 m/sec is the		
(a) 30 m	(b) 0.5 m		
(c) 15.0 m	(d) 0.06 m		
13. Velocity of flow in a channels varies	with the square root of the hydraulic slope.		
(a) Inversely	(b) Directly		
(c) Indirectly	(d) None of these		
14. Total amount of water used by the plant in any specified time is called Consumptive use (C_u			
(a) Transpiration and evaporation	(b) Hydration and evaporation		
(c) Transpiration and percolation	(d) Precipitation and evaporation		
15. The vertical distance between the highest water learning banks is called-	evel anticipated in channel design and the top of the		
(a) Full supply level of water	(b) Maximum permissible water level		
(c) Maximum water wave level	(d) Free board		
16. To prevent erosion in field channels, structure lil	ke are provided.		
(a) Open drop, pipe drops & chute drops stru	cture		
(b) Rectangular & trapezoidal gate structure			
(c) Dykes & retaining wall structure			
(d) Barrage & diversion weir structure			
17. A good water control structures are necessary for			
(a) Reduce labor for irrigation, reduce debris			
(b) Distributing irrigation, check velocity of w			
(c) Reduceing labor for irrigation, check erosi			
(d) Abolish labor for irrigation, check scouring & water loss in the field.			
18. The permissible value of mean velocity of flow in			
(a) 40 cm / sec	(b) 60 cm/sec		
(c) 80 cm / sec	(d) 100 cm / sec		

	r distance between end planes (m), A ₁ =Area of first
end plane(m^2), A_2 =Area of the second end plane planes (m^2).	(m^2) and A_m =Area of middle section parallel to end
(a) $V = \frac{L}{4} (A_1 + 2A_m - A_2)$	(b) $V = \frac{L}{6} (A_1 + 2A_m - A_2)$
(c) $V = \frac{L}{4} (A_1 + 2A_m + A_2)$	(d) $V = \frac{L}{6} (A_1 + 4A_m + A_2)$
20. The most commonly adopted land levelling design	n in small scale jobs is
(a) Contour adjustment method	(b) Profile method
(c) Plan inspection method	(d) Simple plane method
21. For Medium (loamy) soils recommended safe lim	nits of land slop for efficient irrigation is-
(a) 0.05 to 0.20 (longitudinal slope, %)	(b) 0.20 to 0.40 (longitudinal slope, %)
(c) 0.40 to 0.65 (longitudinal slope, %)	(d) 0.60 to 0.80 (longitudinal slope, %)
22. Contour lines, either close together or far apart n	nay imply that-
(a) The average natural slope is either too stee	
(b) The average natural slope is either too roo	
(c) The average natural slope is either too flat	
(d) The average natural slope is either too cla	yey or too sandy.
23. Water is measured under two conditions	
(a) At turbulence (hydraulic jump) and in moti	ion (canals, rivers etc.)
(b) At rest (reservoir, ponds etc.) and in motion	· · · · · · · · · · · · · · · · · · ·
(c) At rest (reservoir, ponds etc.) and in volun	
(d) At upstream and in downstream	,
24. One (1) hectare-meter is equal to	
(a) 100,000 liters	(b) 1 million liters
(c) 10 million liters	(d) 100 million liters
25. If a 38 liter capacity bucket is filled in 12 second	
channel is 0.6m, then the rate of flow is	a by the discharge from a chamier and the depth of
(a) 0.32 liter per second	(b) 20.0 liter per second
(c) 22.8 liter per second	(d) 3.17 liter per second
26. By what structures the regulator can control the s	supplies entering the off take channel?
(a) Sluice gates	(b) Falls
(c) Dams	(d) Piers and planks
27. The minimum slope usually allowed for soft clay a and respectively.	nd alluvial soils for cutting and fillings is
(a) $1:1$, $1\frac{1}{2}:1$ to $2:1$	(b) 2:1, 2:1
(c) 1:1, 3:1	(d) 1:1, 1.0:1 to 3:1
28. According to, the amount of silt held	in suspension is proportional to the upward force of
vertical eddies, and varies as the bed width and s	some power of the velocity of flow in the channel.
(a) Lacey's theory	(b) Chezy's formula
(c) Kennedy's theory	(d) Manning's formula

29.	The drawbacks in Lacey's theory is			
	(a)	The concentration of silt is not included as variable.		
	(b)	Lacey did not properly define the silt grade and silt charge.		
	(c)	Both (a) & (b)		
	(d)	None of these		
30.	_	ation water source generated in households on mination is call	or of	fice buildings from streams without fecal
	(a)	Surface water	(b)	Ground water
	(c)	Industrial waste water	(d)	Grey water
31.		50 cumecs of water supply is required for a od is 120 days, the duty of irrigation water will	-	sown in an area of 2500 ha. and the base
	(a)	1000 ha / cumec	(b)	20.83 ha / cumec
	(c)	6250 ha / cumec	(d)	48.00 ha / cumec
32.		is the total depth of water required by a cro	p du	ring the entire period the crop is in the field.
	(a)	Duty (D)	(b)	Delta (D)
	(c)	Crop period	(d)	Base period (B)
33.		metric system, if B is base period in days and I lied (D) will be-	D is	duty in ha/cumec, then total depth of water
	(a)	$\Delta = \frac{Bx24x60x60}{Dx10000}$	(b)	$\Delta = \frac{Bx24x60x60}{Dx1000}$
	(c)	$\Delta = \frac{Dx24x60x60}{Bx10000}$	(d)	$\Delta = \frac{Bx24x60}{Dx10000}$
34.	Whi	ch method is widely used in India for the compu	ıtatic	on of consumptive use?
	(a)	Penman's equation	(b)	Tanks and lysimeter
	(c)	Hargreaves – Christiansen equation	(d)	Blaney – Criddle equation
35.	Cult	urable Command Area (CCA) consist of –		
	(a)	$Gross\ Command\ Area+Unculturable\ Area.$		
	(b)	$Gross\ Command\ Area-Unculturable\ Area.$		
	(c)	Culturable Cultivated Area + Unculturable Ar	rea.	
	(d)	Culturable Cultivated Area – Unculturable Ar	ea.	
36.	Duty	of water of canal system depends upon –		
	(a)	Canal condition & Type of crop.	(b)	Methods and systems of irrigation.
	(c)	Both (a) & (b)	(d)	None of these
37. Quantity of water flowing for one day at the rate of 1 cumec is known as a and is equal to hectare-meters.				
	(a)	Cumec-day, 8.64	(b)	Cusec-day, 8.64
	(c)	Cumec-day, 8.46	(d)	Cusec-day, 8.46
38.	38. Factor affecting consumptive use of water by a crop are –			
	(a)	Evaporation, cropping pattern & precipitation.	(b)	Transpiration, water source & canal.
	(c)	Wind velocity, water quality & lined channel.	(d)	Irrigation depth, topography & forestation.

39.		may be defined as the quantity of water	er, reg	gardless of its source, required by a crop or		
	diver	diversified pattern of crops in a given period of time for its normal growth under field conditions at a				
	place					
	` /	Total water demand		Water requirement of crops		
	(c)	Net irrigation requirement	(d)	Total irrigation supply		
40.	Wha	t is the correct formula for Gross Irrigation	requi	rement?		
	(a)	$C_u - R_e$	(b)	CIR + leaching losses		
	(c)	FIR/N_c	(d)	NIR/N _a		
41.	Field	I Irrigation Requirement $(FIR) = \frac{NIR}{n}$				
	(a)	where n is Water application efficiency &	NIR	is net irrigation req.		
	(b)	where n is Water application requirement a	& NI	R is net irrigation req.		
	(c)	where n is Water conveyance efficiency &	NIR	is net irrigation req.		
	(d)	where n is Water conveyance requirement	& NI	R is net irrigation req.		
42.	The i	intensity of irrigation means –				
		Percentage of gross command area to be irr	rigate	ed annually		
		% of the mean CCA and GCA to be irrigate	_			
	(c)	Total amount of water supplied in one time	;	•		
	(d)	% of culturable command area to be irrigated	ted ar	nnually		
43.	Duty	of water helps in the work out of	for	designing the channel.		
		Discharge required		Total depth of water		
	` '	Velocity of water		Source of water		
44.	Ара	rticular irrigation field has CCA of 100 h	ectar	es, out of which 100 hectares of land is		
	cultivated for kharif season and 50 hectares of land is cultivated for rabi season. What is the			•		
	inten	sity of irrigation for each season?				
	(a)	50%, 100%	(b)	50%, 50%		
	(c)	100%, 100%	(d)	100%, 50%		
45.	1 acr	re = hectare				
	(a)	0.4047	(b)	0.4011		
	(c)	0.3801	(d)	0.2500		
46.	The	science which deals with the occurrence, dis	tribu	tion and movement of water on the earth		
	inclu	ding that in the atmosphere and below the s	urfac	ee of the earth is called		
	(a)	Environment cycle	(b)	Hydrology		
	(c)	Climatology	(d)	Water resources cycle		
47.	Wha	t source of energy does evaporation and pre	cipita	ation consist of?		
	(a)	Kinetic energy	(b)	Thermal energy		
	(c)	Seasonal energy	(d)	Perennial energy		
48.	Aver	age annual rainfall ranging to dessert to hill	ly reg	gion would be_		
		1100 cm		2500 cm		
	(c)	820 cm	(d)	500 cm		

49.	In non-recording rain gauges (standard gauges) if the collector area is 200 sq.cm and the bottle capacity is 4 litres, then the nominal capacity of rain gauge in cm of rainfall will be			
	(a)	20	(b)	50
	(c)	80	(d)	100
50.	Inten	sity of rainfall is measured by		
	(a)	Anemometer	(b)	Continuously recording gauge
	(c)	Hydrometer	(d)	Seismometer
51.		up which connects points that have the same are	noun	its of precipitation in a given period or for a
	(a)	Rainfall contour map	(b)	Isobars map
	(c)	Isohyetal map	(d)	Isotherms map
52.	Exce	ss rainfall or effective rainfall is		
	(a)	Rainfall – Initial basin loss – Infiltration		
	(b)	Rainfall – Initial basin loss + Infiltration		
	(c)	Rainfall – Interception – Infiltration		
	(d)	Rainfall – Interception + Infiltration		
53.	•	drograph of stream-flow is a graphical repres	enta	tion of the discharge flowing in a river at a
	(a)	Rate of Flow (on X – axis) and discharge (on	Y-ax	xis)
	(b)	Time (on X – axis) and discharge (on Y-axis)		
	(c)	Runoff (on X – axis) and discharge (on Y-axi	s)	
	(d)	Rainfall (on X – axis) and discharge (on Y-ax	is)	
54.	Runc	off consists of		
	(a)	Surface runoff	(b)	Base flow
	(c)	Direct precipitation over the river stream	(d)	All of these
55.	Whic	ch geometric parameter determines the efficien	cy of	the channel?
	(a)	Hydraulic depth	(b)	Section depth
	(c)	Hydraulic radius	(d)	Norma depth
56.		ain starts at 10:20 A.M., and the entire basin a A.M., depth of rainfall is 5.5 cm, then the tim	•	_
	(a)	$T_c = 30 \text{ minutes}$	(b)	$T_c = 40 \text{ minutes}$
	(c)	$T_c = 50 \text{ minutes}$	(d)	$T_c = 60 \text{ minutes}$
57.	If Q_p is peak rate of runoff in cumecs, K=Coefficient of runoff, A= Drainage area of the basin in Ha., p_c = mean rainfall intensity in cm/hr for a duration equal to T_c and a given frequency of occurrence, then Peak Rate of Runoff can be computed by rational formula			
	(a)	$Q_{p} = \left[\frac{1}{36}\right] K p_{c} A$	(b)	$Q_{p} = \left[\frac{1}{24}\right] K p_{c} A$
	(c)	$Q_{p} = \left[\frac{1}{12}\right] K p_{e} A$	(d)	$Q_{p} = \left[\frac{1}{60}\right] K p_{e} A$

58.		process of water entering the surface strata becomes ground water is called	of th	e soil and moves towards the water table
	(a)	Saturation	(b)	Infiltration
	(c)	Sedimentation	(d)	Decantation
59.	Soil	moisture content which is retained indefin	itely	by the soil grain by molecular attraction
	again	nst the gravity is called		
	(a)	Saturation zone	(b)	Ground water
	(c)	Field capacity	(d)	Aquifer
60.	I21s	olated water table held by a small extension	of ir	npervious rock is called
	(a)	Underlying water	(b)	Secret water
	(c)	Under water	(d)	Perched water
61.	The	best known classification system in textural	class	sification is
	(a)	MIT classification system		
	(b)	International classification		
	(c)	Indian classification system		
	(d)	Triangular classification of US public road	ladm	inistration
62.	Acco	ording to USCS, the fined grained soil is cla	ssific	ed on the basis of
	(a)	Grain size	(b)	Plasticity
	(c)	Group index	(d)	Shape
63.	Base	ed on the degree of distinctness of peds (n	atura	l aggregates of soil particles), grades of
	soils	are		
	(a)	Structureless, hard, moderate and strong		
	(b)	Weak, moderate and strong		
	(c)	Structureless, weak, moderate and strong		
	(d)	Structureless, weak, and fragile		
64.		is usually defined as the arrangement	and s	tage of aggregation of soil particle in soil
	mass			
	` ′	Soil structure	` ′	Soil Particle size classification
		Soil aggregation classification	` /	Soil formation
65.	bear	e net ultimate bearing capacity (q_{nf}) is 291. ing capacity (q_{ns}) will be		
	` '	98.25 kN/m^2	. ,	$97.15 \mathrm{kN/m^2}$
	(c)	$0.010\mathrm{kN/m^2}$	(d)	97.25 kN/m^2
66.	In ca	se of general shear failure, continuous failu	re su	rfaces developed between the
	(a)	Edge of the footing and ground surface	(b)	Center of footing and Ground surface
	(c)	Foundation and the underground surface	(d)	None of these
67.		soil sample has a porosity (n) of 40% and $\operatorname{en}(e)$ will be give by	the s	pecific gravity of solids is 2.70, the void
	(a)	$e = \frac{n}{1 - 2.7}$ $e = \frac{n}{1 - n}$	(b)	$e = \frac{2.70}{1 - n}$ $e = \frac{n}{2.70 - n}$
	(c)	$e = \frac{n}{n}$	(a)	$e = \frac{n}{n}$
	(0)	1-n	(u)	2.70-n

68.	For A	Agriculture farm operations, power is need	led to	operate machineries for
	(a)	Water pumping for irrigation	(b)	Seed bed preparation
	(c)	Intercultural operation	(d)	All of these
69.		average command area of a power tiller (7.command about only.	46 kw) is, where one pair of bullock
	(a)	4 hectares, 2 hectares	(b)	3 hectares, 1 hectare
	(c)	5 hectares, 2 hectares	(d)	7 hectares, 1 hectare
70.		operations performed to open up any cultiving crops, are termed as	vable l	and with a view to prepare a seed bed for
	(a)	Puddling	(b)	Primary tillage
	(c)	Secondary tillage	(d)	Combine tillage
71.		ng suction stroke of Diesel engine and Carbu n in respectively.	iretor !	Engine, only and is
	(a)	Air alone, mixture of air and fuel	(b)	Mixture of air and fuel, air alone
	(c)	Fuel, air	(d)	Air alone, Fuel alone
72.	In die	esel cycle engine heat is added at		
	(a)	Constant temperature	(b)	Constant volume
	(c)	Constant pressure	(d)	None of these
73.	In per	trol engine and diesel engine, fuel is ignited l	эy	respectively.
		The heat of compressed air and Electric spa		
	(b)	Electric spark and the heat of compressed a	air	
	(c)	Both by the heat of compressed air		
	(d)	Both by Electric spark		
74.	Mecl	nanical efficiency (η_{mech}) is expressed as		
		$ \eta_{\text{mech}} = \frac{b_p}{i_p} $ where b_p is break horse power	er and	i_p is indicated horse power
	(b)	$ \eta_{\text{mech}} = \frac{\dot{b}_{p}}{\dot{i}_{p}} $ where b_{p} is break horse power	and i	, is injected horse power
	(c)	$ \eta_{\text{mech}} = \frac{b_p}{i_p} \times 100 \text{ where } b_p \text{ is break horse} $	powei	and i _p is indicated horse power
	(d)	$ \eta_{\text{mech}} = \frac{b_p}{i_p} \times 100 \text{ where } b_p \text{ is effective hors} $	se pow	er and i _p is injected horse power
75.	Hors	e Power transmitted by a flat belt (for 3 ply b	elts) c	can be approximately estimated as
	(a)	$HP = \frac{\text{speed in metre per minute} \times \text{ width in}}{800}$	<u>n m.</u>	
		$HP = \frac{\text{revolution in metre per hour} \times \text{width}}{\text{200}}$	n in m.	
	(b)	$HP = \frac{800}{800}$		
	(c)	$HP = \frac{\text{rotation in metre per second} \times \text{ width}}{800}$	in m.	
	(d)	$HP = \frac{\text{velocity in metre per minute} \times \text{width}}{800}$	n in cn	<u>1.</u>