MIZORAM PUBLIC SERVICE COMMISSION

TECHNICAL COMPETITIVE EXAMINATIONS FOR RECRUITMENT TO THE POST OF ASSISTANT SOIL CONSERVATION ENGINEER (ASCE) UNDER LAND RESOURCES, SOIL & WATER CONSERVATION DEPARTMENT GOVERNMENT OF MIZORAM. FEBRUARY, 2021

AGRICULTURAL ENGINEERING PAPER - II

Time Allowed : 2 hours

Full Marks : 200

All questions carry equal marks of 2 each. Attempt all questions.

1.	1. In splash erosion the raindrop energy acts in the form of:					
	(a) Kinetic energy	(b) Chemical energy				
	(c) Potential energy	(d) None of these				
2.	Detachment of soil particles is maximum, when the depth of overland flow is between:					
	(a) $1/5$ and $1/3$ of drop diameter	(b) $1/5$ and $1/3$ of soil's particle's diameter				
	(c) Both (a) & (b)	(d) 0.15 to 0.20mm				
3.	Wind erosion is very common in:					
	(a) Arid zones	(b) Arid and semi-arid zones				
	(c) Humid zones	(d) All of these				
4.	For a storm by which 1.33, 2.50, 4.08, 5.00 and 0 8 hr duration. If the total runoff depth produced by	.05 mm rainfall depth have been occurred during the storm is 7.50mm, the runoff coefficient for the				
	storm is:	<i>"</i>				
	(a) 0.87	(b) 0.78				
	(c) 0.58	(d) 0.68				
5.	Moderate rainfall intensity ranges as:					
	(a) 2.5 to 7.5 mm/hr	(b) 1.5 to 6.5 mm/hr				
	(c) $2.0 \text{ to } 7.0 \text{mm/hr}$	(d) More than 7.5mm/hr				
6.	Manning's roughness coefficient (n) value for For	rest area with dense grass cover is:				
	(a) 0.40	(b) 0.60				
	(c) 0.20	(d) 0.80				
7.	is defined as the average rate of infiltra	tion during the time, when rainfall intensity exceeds				
	the infiltration capacity.					
	(a) Infiltration Index	(b) W - Index				
	(c) ϕ - Index	(d) Threshold Index				
8.	The unit of drainage density is:					
	(a) Sq. m	(b) m^{2}/s				
	(c) m/sqm	(d) m^{3}/s				
9.	The upper limit of runoff coefficient is:					
	(a) 1	(b) 10				
	(c) 1.5	(d) 15				
10.	Which of the following method computes storm-w	vise runoff depth?				
	(a) SCS method	(b) Cook's method				
	(c) Rational method	(d) Morton's method				

11. Area of unit hydrograph divided by the catchment area gives:			
(b)	Peak runoff		
(d)	Total runoff		
s not in	volves splash erosion?		
(b)	Rising phase		
(d)	Both (b) & (c)		
am bank	erosion control?		
(b)	Rubble dam		
(d)	Netting dam		
am bank	erosion control varies from:		
(b)	10 to 15 cm		
(d)	15 to 20 cm		
:			
(b)	sloughing		
(d)	sediment deposition		
arid clin	nate varies from:		
(b)	2.8-3.15m		
(d)	2.4-2.8m		
is to:			
(b)	control soil erosion		
(d)	prevent pond damage		
the form	nula:		
(b)	Clark's formula		
(d)	Khosla formula		
ond sto	rage surface varies from:		
(b)	75-100 micron		
(d)	100-200 micron		
soil.			
terrain.			
e soil.			
terrain.			
slopes:			
(b)	Greater than 6 %		
(d)	Greater than 10%		
g the:			
(b)	Soil scouring		
(d)	All of these		
lam?			
(b)	Gabion		
(d)	Both (a) & (b)		
(b)	5 to 6 m		
(d)	6 to 10 m		
	ant area g (b) (d) (d) (b) (c) (c) (c) (c) (c) (c) (c) (c		

25. Which of the following	ng drop structure can also be used	for water storage along with gully control?
(a) Straight drop str	ructure (b)	Oogee spillway
(c) Drop inlet spillv	vay (d)	Chute spillway
26. The inlet design of dro	op spillway is done using:	
(a) Weir formula	(b)	Rational formula
(c) Khosla formula	(d)	Both (a) & (c)
27. In which condition of	Froude number, a strong hydrauli	c jump takes place:
(a) $F \ge 9.0$	(b)	$F \ge 7.0$
(c) $F = 4.5 - 9.0$	(d)	F = 1.7 - 2.5
28. The value of factor of	safety against sliding of drop strue	ctures should:
(a) Not exceed 0.8	(concrete structure) (b)	Not exceed 0.75 (concrete structure)
(c) Be 1.5	(d)	Both (a) & (b)
29. In the case of pipe spi	llway design, the discharge capac	ity is computed by using:
(a) Orifice formula	(b)	Weir formula
(c) Rankine formula	a (d)	Both (a) & (b)
30. In drop inlet spillway	or pipe spillway the toe drain is us	sed for:
(a) Drainage purpo	se (b)	Stability
(c) Soil erosion con	ntrol (d)	All of these
31. Most common type of	f self recording gauge is:	
(a) Weighing bucke	t (b)	Symon's rain-gauge
(c) Tipping bucket	type (d)	Float type automatic rain gauge.
32. Maximum size of rain	drop varies from:	
(a) 0.5mm-7.0mm	(b)	0.5mm-6.0mm
(c) 0.6mm-7.0mm	(d)	0.5mm-8.0mm
33. Precipitation is said to	be drizzle when the water drople	ts and its intensity is:
(a) <0.5 mm & <0.0	01 mm/hr respectively (b)	>0.5mm & >0.01 mm/hr respectively
(c) <0.5 mm & >0.0	01 mm/hr respectively (d)	<0.05mm & <0.1 mm/hr respectively
34. Bucket capacity of tip	ping rain gauge is:	
(a) 2.5cm of rainfal	l (b)	0.25mm of rainfall
(c) 12.7mm of rainf	Call (d)	5.0mm of rainfall
35. Symon's rain-gauge h	as a receiving bottle capacity of a	bout:
(a) $75-150 \mathrm{mm}\mathrm{of}\mathrm{rs}$	ainfall (b)	70-100 mm of rainfall
(c) $70-150 \mathrm{mm}\mathrm{of}\mathrm{rs}$	ainfall (d)	75-100 mm of rainfall
36. A rainfall is called as li	ight rainfall when its intensity is:	
(a) Less than 2.5 m	m/hr (b)	2.5 mm/hr
(c) More than 2.4 n	nm/hr (d)	2.4 mm/hr
37. Average rainfall over	a basin may be computed using:	
(a) Arithmetic aver	age method (b)	Thiessen polygon method
(c) Isohyetal metho	d (d)	All of these
38. Precipitation caused b	y natural rising of warmer lighter	air in colder, denser surrounding is called:
(a) Orographic prec	cipitation (b)	Convective precipitation
(c) Frontal precipita	ation (d)	Both (a) & (c)

- **39.** For estimation of peak rate of flood for design purpose of structure in absence of any data, the value of ϕ -index is taken as:
 - (a) 0.2cm/hr
 - (c) 0.1cm/hr
- **40.** The hydrologic flood routing methods are:
 - (a) Equation of continuity only
 - (c) Both momentum and continuity equations
- **41.** A plot of rainfall intensity versus time is called:
 - (a) Hydrograph
 - (c) Hyetograph
- **42.** A hydrometric curve is a plot of:
 - (a) Time of concentration and elevation curve of catchment.
 - (b) Area elevation curve.
 - (c) Spot rainfall values and isohyets on a basin map.
 - (d) Depth of rainfall & elevation of a catchment.
- **43.** Kirpich formula estimates the time of concentration (T_c) as:
 - (a) $T_C = 0.02((L^3 / H)^{\frac{1}{2}})^{0.77}$ (b) $T_C = 0.02L^{0.77}S^{-0.385}$
 - (c) $T_C = 0.02(LS)^{-0.385}$ (d) $T_C = 0.02(LS)^{0.77}$
- **44.** The peak of a flood hydrograph due to a 6-hr storm is 470m³/s. The mean depth of rainfall is 8.0cm. Assuming an average infiltration loss of 0.25cm/hr and a constant base flow of 15m³/s, estimate the peak discharge of 6-hr Unit hydrograph for this catchment.
 - (a) $65m^{3}/s$ (b) $70m^{3}/s$
 - (c) $80m^{3}/s$ (d) $75m^{3}/s$
- **45.** Most commonly used non-recording type rain-gauge is:
 - (a) Weighting bucket (b) Symon's rain-gauge
 - (c) Tipping bucket rain-gauge (d) Floating type rain-gauge.
- 46. Line on a rainfall map of the basin joining places of equal rainfall reading is called:
 - (a) Isohyets (b) Isoline
 - (c) Isocontour (d) Isohyetals
- **47.** The main components of hydrologic cycle are:
 - (a) Precipitation, evapotranspiration and evaporation
 - (b) Rainfall, evaporation and runoff
 - (c) Rainfall and snow fall
 - (d) None of these
- 48. Bucket capacity of tipping rain gauge is:
 - (a) 2.5cm of rainfall
 (b) 0.25mm of rainfall
 (c) 12.7mm of rainfall
 (d) 5.0mm of rainfall
- **49.** Straight line method for base flow separation is given as:
 - (a) $N=0.89A^{0.2}$, days (b) $N=0.88A^{0.2}$, days
 - (c) $N=0.88A^{0.4}$, days (d) $N=0.89A^{0.4}$, days
- 50. Symon's rain-gauge has a receiving bottle capacity of about:
 - (a) 75-150 mm of rainfall (b) 70-100 mm of rainfall
 - (c) 70-150 mm of rainfall (d) 75-100 mm of rainfall

- (b) 0.3cm/hr
- (d) 0.4cm/hr
- (b) Equation of motion only
- (d) Energy equation.
- (b) Man curve
- (d) Isohyet

- **51.** Peak of a flood hydrograph due to 4-hr effective storm is $400m^3/s$. The mean depth of the rainfall is 5.9 cm. Assuming an average infiltration loss of 0.35 cm/hr and a constant base flow of 25 m³/s, estimate the peak of a 4-hr unit hydrograph.
 - (a) $80.23m^{3/s}$ (b) $83.33m^{3/s}$ (c) $93.23m^{3}/s$ (d) $90.33m^{3/s}$
- **52.** The magnetic bearing of the sun at noon is 160°, then the variation is:
 - (a) 20 North (b) 20 East
 - (c) 70 East (d) 70 North
- 53. In a levelling between two points A and B on opposite banks of a river, the level was set up near A and the staff reading on A and B were 1.570 and 2.875 respectively. The level was then moved and set up near B and respective staff readings on B and A were 2.055 and 0.850, then the difference of level between A and B is:
 - (a) 1.255 m (b) 2.152 m (c) 1.525 m (d) 1.725 m

54. True bearing of a line is 275°45', then the azimuth of the line is:

(a)	30°45'	(b)	90°45'
(c)	45°15'	(d)	84°15'

55. The bearing of the line with reference to an arbitrary meridian is 85°30'. At a later date, it was established that the angle between the arbitrary meridian and the true meridian is 15°10' W. Then the true bearing of the line is:

(a)	100°40'	(b)	70°20'
(c)	79°20'	(d)	280°40

56. A survey line BAC crosses a river, A and C being the near and opposite banks respectively. A perpendicular AD, 40 m long is set out at A. if the bearing of AD and DC are 38°45' and 278°45' respectively, then the wide of the river is:

(a)	60.23 m	(b)	65.28 m
(c)	69.28 m	(d)	79.20 m

57. A chain line ABC crosses a stream, B and C being the near and far off banks respectively. A line BE of length 60 m is set out at right angles to the chain line B. If the bearings of BE and EC are 282°45' and 42°45' respectively, then the width of the stream is:

(a)	103.92 m	(b)	100.10 m
(c)	92.57 m	(d)	105.06 m

58. What will the height of a satellite if its angle of view is 80° and radius of earth is 6380 km?

(a)	3545 km	(b)	4257 km
(c)	2754 km	(d)	5215 km

59. Which of the scale is the smallest respectively?

(a)	1 cm = 10 m	(b)	1 cm = 1000 km
(c)	RF = 1/100000	(d)	1:10000

- 60. The length of a survey line was measured with a tape having nominal length 20 m and was found to be 236.4 m. As a check the length was again measured with 30 m tape and was found to be 240.5 m. On testing it is found that the 20 m tape is 60 cm too short, then the true length of 30 m tape is:
 - (a) 60 cm too long (b) 20 cm too short
 - (c) 60 cm too short (d) $20 \,\mathrm{cm}$ to long
- 61. What will be the maximum length of an offset so that displacement of a point on plan on scale 1 cm = 10 m should not exceed 0.025 cm, if the offset was laid out 5° from its true perpendicular direction?
 - (a) 3.284 m (b) 2.868 m
 - (c) 2.688 m (d) 3.482 m

- **62.** The length of a survey line measured with a 30 cm chain was found to be 631.5 m. When the chain was compared with a standard chain, it was found to be 0.10 m too long. Then the true length of survey line is:
 - (a) 603.033 m
 - (c) 630.346 m (d) 633.603 m
- **63.** The area of a certain field was measured with a 30 m chain and found to be 5000 m². It was after wards detected that the chain used was 10 cm too short, then the true area of the field
 - (a) 4696.28 m^2 (b) 4966.72 m^2
 - (c) 496.67 m^2 (d) 469.28 m^2
- 64. The magnetic bearing of a line AB is S 30° E. If the declination is 6° west, then the true bearing is:
 - (a) S 36° E (b) N 36° W
 - (c) N 36° E (d) S 24° E
- **65.** The true bearing of a line is 34°20'40" and the magnetic declination at the place of observation is 2°00'20" on the date of observation, then the magnetic bearing of the line is:
 - (a) 36° 21' 00" (b) 32° 00' 20"
 - (c) 32° 20' 20" (d) 34° 20' 20"
- **66.** The relief displacement on a vertical photograph:
 - (a) increases as the distance from the principal point increases
 - (b) increases as ground elevation increases
 - (c) decreases with increase in flying height
 - $(d) \ \ all \ of these$
- **67.** The relief displacement is:
 - (a) negative below datum
 - (c) zero for point vertically below exposure station (d) all of these
- **68.** Offsets are:
 - (a) chain lines out of alignment
 - (c) small measurements from chain line
- **69.** Method used for chaining on sloping ground is:
 - (a) By stepping method
 - (c) By Hypotenusal allowance method
- 70. Compensating errors in chaining are:
 - (a) proportional to the length of the line
 - (b) proportional to the square root of the length of the time
 - (c) inversely proportional to the square root of the length of the line
 - (d) inversely proportional to the length of the line
- 71. Negative errors are caused in chain, when its length is:
 - (a) equal to the standard length (b) less than the standard length
 - (c) more than the standard length (d) any of these
- 72. Number of links in a 30 m metric chain is:
 - (a) 180 (b) 100
 - (c) 200 (d) 150
- 73. The value of magnetic declination if the magnetic bearing of sun at noon is 350°.
 - (a) 80° E (b) 10° E (c) 80° W (d) 10° W

- (b) measurements taken in chain survey
- (d) none of these
- (b) By Clinometor method
- (d) Both (a) & (c)

- pai point increases

(b) positive above datum

- aph:

(b) 631.241 m

- 74. The angle between the prolongation of the preceding line and the forward line traverse, is called:
 - (a) included angle

- (b) deflection angle
- (c) direct angle (d) none of these
- 75. In a levelling across a river, two pegs A and B were fixed on opposite banks. The following readings were taken

	D 1	Staff reading at			
	Position of level	А	В		
	Level at A	1.871	1.469		
	Level at B	1.664	0.706		
	If R.L of A is 50.865 m	, then the R.L of	the point B i	s:	
	(a) 51.545 m			(b)	62.255 m
	(c) 63.940 m			(d)	56.270 m
76.	The rise and fall metho	d of the levelling	provides a c	omp	blete check on:
	(a) intermediate sight	t		(b)	back sight
	(c) foresight			(d)	all of these
77.	Natural error in levellin	ng is caused due t	0:		
	(a) wind vibration			(b)	temperature variation
	(c) atmospheric refra	iction		(d)	all of these
78.	An ideal vertical curve	to join two gradi	ents, is:		
	(a) Circular			(b)	Parabolic
	(c) Elliptical			(d)	Hyperbolic
79.	The line of collimation	should be paralle	l to:		
	(a) vertical axis			(b)	bubbles axis
	(c) both (a) & (b)			(d)	none of these
80.	Which is an odd instrur	nent with regards	to levelling?)	
	(a) Altimeter			(b)	Planimeter
	(c) Abney hand level	l		(d)	Clinometer
81.	For a dumpy level in pe	erfect adjustment	, the horizon	tal c	cross hair should be in a plane
	(a) parallel to vertica	laxis		(b)	parallel to axis of bubble tube
	(c) perpendicular to	vertical axis		(d)	none of these
82.	In levelling, a station is	a point where:			
	(a) bench mark is ma	ark		(b)	staff is placed
	(c) instrument is set	up		(d)	none of these
83.	The contour interval is	depends upon:			
	(a) purpose and exte	nt of survey		(b)	scale of the map
	(c) nature of the grou	ınd		(d)	all of these
84.	Contour interval is prop	portional to:			
	(a) directly to the fla	tness of the grou	nd	(b)	directly to the scale of map
	(c) inversely to the s	cale of map		(d)	none of these
85.	In direct method of con	touring, the proc	ess of locatir	1g p	oints lying on the contour is known as:
	(a) ranging	6, 1		(b)	horizontal control
	(c) vertical control			(d)	none of these
86.	In farm pond embankm	ent the function	of core wall i	s to	:
	(a) Check the seepag	ge flow		(b)	Prevent dam damage

- (c) Cause sediment deposition
- (d) All of these

87. The type of surveying in which the curvature of earth is taken into account is called:

	(a) geodetic surveying	(b)	plan surveying
	(c) preliminary survey	(d)	topographical survey
88.	Unit Hydrograph theory was enunciated by:		
	(a) Merril Bernard	(b)	W.W. Horner
	(c) LeRoy K. Sherman	(d)	Robert E. Horten
89.	The surface Run-off is the quantity of water:		
	(a) Absorbed by soil	(b)	Intercepted by building and vegetative covers
	(c) Required to filled surface depression	(d)	That reaches the stream channels
90.	In remote sensing the sensors are used to detect:		
	(a) EMR	(b)	IR
	(c) Sound energy	(d)	Visible light
91.	The first operational remote sensing satellite is:		
	(a) TRIOS	(b)	NOAA
	(c) GMS	(d)	SPOT
92.	The function of levelling head is:		
	(a) to provide a bearing for outer hollow spindle	(b)	to attach the Theodolite to the tripod
	(c) to provide a mean of levelling the instrument	(d)	all of these
93.	The instrument used for measuring area on a contou	ır ma	p is:
	(a) Clinometer	(b)	Planimeter
	(c) Tensiometer	(d)	Graphometer
94.	For construction of grassed waterways the land slo	pe sh	ould be:
	(a) Less than 20%	(b)	5-10%
	(c) 10-15%	(d)	20-30%
95.	The most suitable shape of grassed waterways is:		
	(a) Triangular	(b)	Trapezoidal
	(c) Rectangular	(d)	Parabolic
96.	The most optimum flow velocity for the ballasted w	aterv	vay is:
	(a) 3 m/s	(b)	10 m/s
	(c) 1.8 m/s	(d)	5 m/s
97.	Which of the following is associated in computation	n of fl	ow velocity in grassed waterway design?
	(a) Manning's Formula	(b)	Rational Formula
	(c) Inglis Formula	(d)	Muskingum Equation
98.	The most optimum flow velocity of runoff for the g	rasse	d waterway with drop structure is:
	(a) 6 m/s	(b)	3 m/s
	(c) 10 m/s	(d)	1.8 m/s
99.	The contour bunds spacing varies between:		
	(a) 5-10 m	(b)	5-15 m
	(c) 5-20 m	(d)	Both (a) & (b)
100.	In bench terrace the inward slope varies from:		
	(a) 2-10 %	(b)	1-5%
	(c) $2-8.5\%$	(d)	5 - 10 %

* * * * * * *