MIZORAM PUBLIC SERVICE COMMISSION

TECHNICAL COMPETITIVE EXAMINATIONS FOR RECRUITMENT TO THE POST OF JUNIOR GRADE OF MIZORAM PLANNING, ECONOMICS & STATISTICAL SERVICE OCTOBER, 2015

MATHEMATICS PAPER-I

Time Allowed: 3 hours

Full Marks: 100

Figures in the margin indicate full	marks for the questions.	
PART – A		
Attempt all quest	tions.	
1. Choose the correct answer from the following alterna	atives: (10×2=2	U)
(i) Consider the real function	(10.2-2	Ų
$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$		
Then		
(a) f is discontinuous at every point	(b) f is continuous at every point	
(c) f is discontinuous on \Box except at origin	(d) None of these	
(ii) The sequence $f_n(x) = x^n$		
(a) Converges uniformly on [0, 1](c) Pointwise convergent on [0, 1]	(b) Not convergent on [0,1](d) None of these	
(iii) Let G be a simple group of order 168. What is		
(a) 1 (c) 8	(b) 7 (d) 28	••.
(iv) If x and y are in Hilbert space, then		
(a) $x \perp y \Rightarrow x + y = x - y > x ^2 + y ^2$		
(b) $x \perp y \Rightarrow x + y = x - y < x ^2 + y ^2$		
(c) $x \perp y \Rightarrow x + y = x - y = x ^2 + y ^2$		
(d) none of these		

(v) The set $M_2(\Box) = \left\{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} : a, b \in \Box \right\}$, under matrix multiplication and addition is

(b) A left ideal which is not a right ideal

(d) None of these

(a) A right ideal which is not a left ideal

(c) Not an ideal of $M_2(\square)$

(a) Every abelian group G is not a module over the ring of integers.

bijective?

(a) Nullity (T) = n

(c) Rank(T)-Nullity(T)=n

(vii) Choose the correct one from the following

(vi) Let $\overline{T}: \square$ " be a linear transformation. Which of following statements implies that T is

(b) Rank (T) + Nullity (T) = n

(d) Rank(T)=Nullity(T)=n

(b) The kernel of the homomorphism T of a	an R-module has only one element	
(c) Any irreducible R-module is cyclic		
(d) The range of a homomorphism is a subn	nodule.	
(viii) Let $X = \{a, b, c\}$ and $B = \{\{b, c\}, \{c, a\}\}, \{c, a\}\}$	then	
(a) B is not a subset of X		
(b) B cannot be a base for any topology on	1 $oldsymbol{X}$	
(c) B can be a base for any topology on X		
(d) none of these		
(ix) The space l^p is a Hilbert space if	(1)	
(a) $p=1$	(b) $p = 2$	
(c) $p = 3$	(d) $p=n$	
(x) The degree of freedom for a particle moving in	ı straight line is	
(a) 0	(b) 1	
(c) 2	(d) 3	
<u>PART – B</u>		
Attempt all ques	tions.	
2. Prove that the real valued function f on \Box ² defined b	y	(2)
$\int v^2 - v^2$		
$f(x,y) = \begin{cases} xy \frac{x-y}{x^2+y^2}, & \text{if } (x,y) \neq (0,0) \end{cases}$		
$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$		
has unequal mixed partial derivatives $D_{12}f$ and $D_{21}f$	^c at (0,0).	
7 IF / D		
3. If $(R, +, \times)$ is a ring with $a^2 = a \ \forall a \in R$, show that	$a+a=0$ and $ab=ba \forall a,b \in R$.	(2)
4. Give an example of a space which is first countable b	out not second countable	(2)
		(2)
5. Prove that the angular momentum conjugate to a cycle	lic coordinate is conserved.	(2)
6. Show that the sequence $\left(\frac{1}{n}\right)$ is a Cauchy sequence.		(2)
		\ - -/

7.	Show that if K is compact subset of \bar{R} and if $f: K \to R$	is continuous on K,	then f(K) is compact.(2)
8.	Show that an orthonormal set is linearly independent.		(2)

9. Consider the linear mapping $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by f(x, y) = (3x + 4y, 2x - 5y).

Find the matrix A relative to the basis $\{(1,0),(0,1)\}$.

- 10. Show that every absolutely convergent sequence is convergent. (2)
- 11. Show that every subgroup of an abelian group is normal. (2)

PART-C

Attempt any 6 (six) questions.

12. Establish Taylor's formula for real-valued functions on a subset of □ " stating clearly the conditions to be fulfilled by a function and its domain.

Using Taylor's formula express the function $f(x, y) = x^2 + xy + y^2$ in power of (x-1) and (y-2).

(10)

- 13. If K is a compact subset of \square and $f: K \to \square$ is injective and continuous. Show that f^{-1} is continuous on f(K).
- 14. If H is a subgroup of G and N is a normal subgroup of G, then prove that

$$\frac{HN}{N} \cong \frac{H}{H \cap N} \tag{10}$$

- 15. Show that a Euclidian domain is always a Principal Ideal domain. (10)
- 16. Explain the principle of virtual work and discuss that d'Alembert's principle is a generalisation of the principle of virtual work for a dynamical system.(10)
- 17. Prove that the Gaussian integers $z(i) = \{a+ib \mid a,b \in Z\}$ form a Euclidean ring. (10)
- 18. Show that the sequence $\langle f_n \rangle$ where $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ is uniformly convergent on $[0, \pi]$. (10)
- 19. Prove that the product of finitely many compact spaces is compact. (10)

- 20. (a) Let G be a group of order 30. Show that a 3-Sylow subgroup or a 5-Sylow subgroup of G must be normal.(5)
 - (b) Show that the order of subgroups of a finite order group divides the order of the group. (5)
- 21. Define Poisson bracket and prove that the fundamental Poisson bracket are invariant under canonical transformation.

* * * * *