MIZORAM PUBLIC SERVICE COMMISSION

TECHNICAL COMPETITIVE EXAMINATIONS FOR RECRUITMENT TO ASSISTANT ENGINEERING (CIVIL) CONTRACT BASIS UNDER TRADE AND COMMERCE DEPARTMENT, JULY 2016.

CIVIL ENGINEERING PAPER - I

Time Allowed: 3 hours

Full Marks: 200

PART-A

(Objective Type Questions (100 Marks)

All questions carry equal marks of 2 each.

Attempt all questions.

This Part should be answered only on the **OMR Response Sheet** provided.

				X.
1.	The process of mixing water in quick li	me is known as		
	(a) calcination	(b)	slaking	
	(c) grinding	(d)	setting	
2.	For practical purposes, Portland cement namely Lime, Silica, Iron Oxide and	may be considered	ed as composed of four princi	pal compounds
	(a) Magnesia	(b)	Soda	
	(c) Alumina	(d)	Sulphur Oxide	
3.	Coal, petroleum, air and water are used	l in the productio	n of this type of plastics. Ide	ntify the type.
	(a) Acrylic	(b)	Vinyl	
	(c) Poly Vinyl Acetate (PVA)	(d)	Poly Vinyl Chloride (PVC)	
4.	Development of these trees takes place by addition of one annular ring every year. Identify the type of tree.			
	(a) Endogenous	(b)	Exogenous	
	(c) Cambium	(d)	Medullary	
5.	The first product in the process of conversion of Iron ore into Steel is			
	(a) pigiron	(b)	cast iron	
	(c) wrought iron	(d)	metallic iron	
6.	This is the most common type of floor Patent Stone flooring. Identify the type		an buildings and it is also kr	own as Indian
	(a) Concrete floor covering	(b)	Stone floor covering	
	(c) Tile floor covering	(d)	Mosaic floor covering	
7.	A piece of timber attached in inclined p	osition within a c	loor frame is called a	
.,	(a) mullion		louver	
	(c) sash	(d)	horn	
		* *		

		Total	hia aaaa
8.	Sometimes the light entering from the windo some more windows are provided on the fla window is known as	ws in the walls of a building is inadequate. In the roofs to admit more light into the room. This	nis case, s type of
	(a) Sky light	(b) Dormer window	
	(c) Clerestorey window	(d) Lantern light	
•	A type of roof, commonly adopted, sloping i	n two directions is known as	
У.		(b) Gabble roof	
	(a) Shed roof(c) Hip roof	(d) Mansard roof	
4.0		ance of a septic tank from any source of drink	ng water
10.	must be	and of a separe than 2000 and	
	(a) 22 metres	(b) 20 metres	
	(c) 18 metres	(d) 16 metres	
11.	As per IS 456: 2000, for spans upto 10 m, the to be satisfied provided that the span to effect greater than	e vertical deflections limits may generally be tive depth ratio in case of simply supported bea	assumed ums is not
	(a) 7	(b) 15	
	(c) 20	(d) 26	
12	. A limit state design should satistfy the service	eability requirements such as deflection and	
	(a) flexure	(b) shear	
	(c) torsion	(d) cracking	
13	. The permissible stresses in steel reinforceme of IS 432 (Part I) in Tension upto and include	ent (in N/mm²) in Mild Steel Bars Conforming ling 20 mm diameter is	to Grade I
	(a) 130	(b) 140	
	(c) 190	(d) 230	
14		slenderness ratio with respect to major and n	ninor axes
	(a) 10	(b) 12	
	(c) 14	(d) 16	
15		nuous beams, which of the following statemen	nts is true?
	(a) compression at top fibre	(b) tension at top fibre	
	(c) compression at neutral axis	(d) tension at neutral axis	
16	5. The slenderness ratio of a steel member carriloads shall not exceed	ying compressive loads resulting from dead an	d imposed
	(a) 160	(b) 180	
	(c) 200	(d) 220	
1'	7. The distance between centre of rivets (min diameter of rivets. Find the correct replace	imum pitch) should not be less than X times the ment for X.	ie nominal
	(a) 1.50	(b) 2.00	
	(a) 2.50	(d) 3.00	

18. The body of a bolt is termed as	
(a) shank	(b) nut
(c) head	(d) washer
19. Plug weld is also known as	
(a) lap weld	(b) fillet weld
(c) butt weld	(d) slot weld
20. The black bolts cannot carry loads equal to those of remedial measures adopted is the use of	
(a) unfinished bolts	(b) turned bolts
(c) rough bolts	(d) common bolts
21. Which of the following is usually considered as a b	asic or fundamental quantity?
(a) Mass	(b) Length
(c) Time	(d) All of these
22. The energy developed by a force acting through a	distance against resistance is known as
(a) power	(b) work
(c) moment	(d) torque
	on point are called
23. Forces whose line of action pass through a comme	(b) non-concurrent forces
(a) non-parallel forces(c) coplanar forces	(d) concurrent forces
24. "If three coplanar forces acting at a point on a body keet to the sine of the angle between the other two forces."	ees".
The above statement is known as	(b) Lami's theorem
(a) Triangle law of forces(c) Varignon's theorem	(d) Polygon law of forces
25. The rotational tendency of a force is called	(b) translation
(a) torque	(d) couple
(c) moment	
26. Equilibrium conditions for coplanar concurrent for	
(a) $\sum V = 0$	(b) $\sum H = 0$
(c) both (a) and (b)	(d) none of these
27. The force polygon for coplanar concurrent forces	
(a) must close	(b) must not close
	(d) any of these
28. A rigid body in translation	(b) can only move in a straight line
(a) can move along a straight or curved path	(d) must undergo curvilinear motion
(c) cannot move on a circular path	(a) must undergo cui vinnicai motion

a a 1	tion and strength of materials?			
29. Which of the following forms the basis of rigid bod	(b) Centre of gravity			
(a) Centroid	(d) any of these			
(c) Moment of inertia				
30. Impulse gives a measure of the product of	(b) force and accelaration			
(a) force and velocity	(d) force and time			
(c) force and displacement				
31. The combined effect of external forces acting on a	a body is called			
(a) stress	(b) strain			
(c) load	(d) work			
32. The internal resistance which the body offers to m	neet with the external force is called			
(a) stress	(b) strain			
(c) load	(d) work			
33. The ratio of linear compressive stress and compre	essive strain is termed as			
(a) Modulus of rigidity	(b) Modulus of elasticity			
(c) Poisson's ratio	(d) Bulk Modulus of elasiticity			
34. The ratio of lateral strain to linear strain is known	n as			
(a) Modulus of rigidity	(b) Modulus of elasticity			
(c) Poisson's ratio	(d) Bulk Modulus of elasiticity			
35. If Poisson's ratio = 1/m, E = Modulus of Elasticit given by	y and $C = Modulus$ of Rigidity, then their relation is			
(a) $E = C (1 + 1/m)$	(b) $E = 2 C (1 + 1/m)$			
(c) $E = C(1 + 2/m)$	(d) $E = 2 C (1 + 2/m)$			
36. If Poisson's ratio = 1/m, E = Modulus of Elastic relation is given by	city and K = Bulk Modulus of Elasticity, then their			
(a) $E = K (1 - 2/m)$	(b) $E = 2 K (1 - 2/m)$			
(c) $E = 3K (1 - 2/m)$	(d) $E = 4 K (1 - 2/m)$			
37. If E = Modulus of Elasticity, K = Bulk Modulus	of Elasticity and C = Modulus of Rigidity, then their			
relation is given by (a) $E = 9KC / (3K + C)$	(b) $E = (3K + C) / 6KC$			
(c) $E = 6KC / (K + 3C)$	(d) $E = 3KC / (3K + C)$			
38. Which of the following statements is incorrect?(a) Stress is directly proportional to strain within elastic limit				
(a) Stress is directly proportional to strain (b) The stress is force per unit area				
(c) Hooke's law holds good upto the breaking point				
(d) The ratio of linear stress to linear strain is	called Young's Modulus.			
and the subjected to tensile force P If its r	19. A member is subjected to tensile force P. If its normal cross-section perpendicular to line of force is A, what will be the resulting normal stress in an oblique plane inclined at an angle θ to transverse			
	in opiique plane meimou at an angle () to atamit of the			
plane?	(b) $(P/2A)\cos^2\theta$			
(a) $(P/A)\cos 2\theta$	(d) $(P/A) \sin^2 \theta$			
(c) $(P/A)\cos^2\theta$	(M) (1/11) min ()			

40.	Bending moment at supports in case of simply sup	pported	beams is always		
	(a) zero	(b)	unity		
	(c) less than unity	****	more than unity		
41	If b= width and d = depth of section, Moment of in	nertia o	f a rectangle about its XX – axis is given by		
71.	(a) $db^3/12$	(b)	$bd^3/12$		
	(c) $bd^2/6$	(d)	bd ³ /6		
42.	A beam of length L, fixed at both ends, carries a post of the beam, the maximum deflection of the beam	oint load n is	d W at its centre. If EI is the flexural rigidity		
	(a) WL ³ /24EI	(b)	WL ³ /48EI		
	(c) WL ³ /96EI	• •	WL ³ /192EI		
43	A beam of length L, fixed at both ends, carries throughout the span. If EI is the flexural rigidity of	a unifo of the be	rmly distributed load of w per unit length cam, the maximum deflection of the beam is		
	(a) $wL^4/12EI$	(b)	wL ⁴ /24E1		
	(c) $wL^4/192EI$	(d)	wL ⁴ /384EI		
44	. A beam of length l, fixed at both ends, carries throughout the span. The bending moment at the	a unifo	ormly distributed load of w per unit length		
	(a) $wl^2/8$	(b)	$wl^2/12$		
	(c) $wl^2/16$	(d)	$wl^2/24$		
45	6. Generally influence lines are drawn for a / an X lo for X.	oad mov	ing on the span. Find the correct replacement		
	(a) zero		unit		
	(c) eccentric	` `	uniformly distributed		
40	5. The sum of rotation factors at a point in Kani's	Method	of design is replacement for X.		
•	(a) 0	(b)	- 1/2		
	(c) 1/2) 1		
4'	7. A beam of length L is fixed at one end and sim rigidity, the stiffness factor of the beam is	nply sup	oported at the other end. If EI is the flexural		
	(a) EI/L	` .) 2EI/L		
	(c) 3EI/L) 4EI/L		
4	8. A beam of length L is simply supported at both e the beam is	ends. If I	EI is the flexural rigidity, the stiffness factor of		
	(a) EI/L	(b			
	(c) 3EI/L	(d) 4EI/L		
4	9. Which of the following is the reason of unsymm	netrical	bending?		
•	(a) The section is symmetrical but the load line is inclined to both principal axes.				
	(b) The section is unsymmetrical and the loa	d line is	along centroidal axis.		
	(c) neither (a) nor (b)				
	(d) both (a) and (b)				
	50. In the case of unsymmetrical bending, the direct	ction of	neutral axis is		
	(a) perpendicular to the plane of bending.	(l	o) not perpendicular to the plane of bending.		
	(c) neither (a) nor (b)		d) both (a) and (b)		

(c) neither (a) nor (b)

PART - B

(Short Answer Questions (100 Marks)

All questions carry equal marks of 5 each.

Attempt all questions.

This Part should be answered only on the Answer Booklet provided.

- 1. Describe, in brief, the important steps for manufacture of hand- made common burnt clay building bricks as practiced in India.
- 2. Describe the various characteristics of defects in structural timber.
- 3. Describe the various types of Door Movements commonly adopted in India.
- 4. Briefly describe the various methods of damp proofing commonly adopted.
- 5. What are the basic assumptions for design of Reinforced Cement Concrete members based on elastic theory?
- 6. The reinforcement of a singly reinforced beam, of 200mm width and effective depth of 300 mm consists of 4 bars of 12 mm diameter. Determine the maximum stress in concrete when steel is stressed to 120 N/mm². Take m = 19.
- 7. A short column of 400mm x 400 mm in section is reinforced with 8 bars of 20 mm diameter. Find the safe load on the column, as per IS Code, if the permissible stresses in steel and concrete are 180 N/mm² and 4 N/mm² respectively.
- 8. A simply supported pre-stressed concrete beam of cross-section 400mm x 600mm is loaded with a total uniformly distributed load of 256 KN over a span of 6 m. If the pre-stressing force is 1920 KN and the tendon is eccentric, located at 200mm above the bottom fibre, determine the extreme fibre stresses in concrete at mid-span.
- 9. A single steel angle discontinuous strut ISA 150mm x 150mm x 12mm with single riveted connection is 3.60 metres long. Calculate the safe load carrying capacity of the section in KN. Given (a) Sectional area, A= 3459 mm² (b) $r_{yy} = r_{xx} = 46.10$ mm (c) $r_{uu} = 58.30$ mm (d) $r_{vv} = 29.30$ mm. (e) allowable working stress = 52 N/ mm²
- 10. A single riveted lap joint is made in 16 mm thick plates with 20 mm diameter rivets. Determine the strength of the joint if the pitch of the rivets is 6 cm. Take (a) safe permissible shear stress for the rivet material = 1000 kg/cm² (b) safe permissible bearing stress for the rivet material = 1600 kg/cm² and (c) Permissible tensile stress for the plate material = 1200 kg/cm².
- 11. State Varignon's theorem. Define free body diagram. Draw the free body diagram of an aluminium box of mass 'm' at rest on a plane inclined at an angle of 30° to the horizontal.
- 12. A beam ADCB of 6 metres length is hinged at left support A and supported on rollers at right hand support B. Points D and C are at a distance of 2 metres and 4 metres from A respectively. A concentrated vertical load of 10 KN acts at D with uniformly distributed load of 3 KN/m acting between D and C. Besides, a concentrated load of 8 KN acts at C at an angle of 45° to the horizontal. Find the magnitude of support reaction at B.
- 13. A man and a boy carry a weight of 300 N between them by means of a uniform pole 2m long and weighing 100 N. Where must the weight be placed so that the man may bear twice as much of the weight as the boy?

- 14. Two forces acting at a point have their resultant 15 N when they act at right angles and their least resultant is 3 N. Find their greatest resultant and also the resultant when they act at an angle of 60°.
- 15. A uniform steel bar of 2 m long, 10mm diameter is subjected to a tensile force of 4 KN. Determine the tensile stress and its elongation if Young's Modulus E is 1.86 x 100000 N/mm².
- 16. A point in a strained bar is subjected to two mutually perpendicular tensile stresses of 200 N/mm² and 100 N/mm². Determine the intensities of normal and resultant stresses on a plane inclined at 30° to the axis of the minor stress.
- 17. Write short notes on (a) Clayperon's Theorem of Three Moments (b) Moment Distribution Method.
- 18. A simply supported beam of 6 metre length carries a uniformly distributed load of 8KN/m throughout its whole span. Analyse the beam and Draw the Shear Force and Bending Moment diagrams for the beam.
- 19. What is an influence line diagram? A Cantilver beam AB, of length 3 metres, is fixed at A. A load of 1 N moves from the free end B towards A. Draw the influence line diagrams for Bending Moment and Shear Force.
- 20. A simply supported beam, 6 metres long, is carrying a concentrated load of 10 KN at its centre. If the slope at the ends of the beam is not to exceed 2°, find the deflection at the centre of the beam.

* * * * * *