MIZORAM PUBLIC SERVICE COMMISSION ## TECHNICAL COMPETITIVE EXAMINATIONS FOR RECRUITMENT TO THE POST OF INSPECTOR OF LEGAL METROLOGY UNDER FOOD, CIVIL SUPPLIES & CONSUMER AFFAIRS, GOVT. OF MIZORAM NOVEMBER, 2023 ## MECHANICAL ENGINEERING PAPER-I | | | MEETINI VIENE ENGIN | | divo lai Ek-i | |------|--------|---|----------|---| | Time | Allov | wed: 2 hours | | Full Marks: 200 | | | | All questions carry equal | mar | ks of 2 each. | | | | Attempt all que | | | | 1. | Pseu | d-plastic is a fluid for which | | un additional resident in | | | (a) | dynamic viscosity decreases as the rate of she | ear in | ncrease | | | | newton's law of viscosity holds good | | | | | (c) | dynamic viscosity increases as the rate of she | ar in | creases | | | (d) | dynamic viscosity increases with the time for | whic | ch the shearing forces are applied | | 2. | The | viscosity of water with respect to air is about | | | | | (a) | 50 times | (b) | 55 times | | | (c) | 60 times | (d) | 65 times | | 3. | Wha | t are the dimensions of kinematic viscosity of a | fluid | !? | | | | LT ⁻² | | L2T-1 | | | (c) | ML-1T-1 | (d) | ML-2T-2 | | 4. | | it cubic metre of water is subjected to a pressure
unts to $\underline{}$ m ³ when bulk modulus K = 2 | | | | | (a) | 1/20 | (b) | 1/200 | | | (c) | 1/2000 | (d) | 1/3000 | | 5. | All li | quid surfaces tend to stretch. This phenomenon | is c | alled | | | (a) | Cohesion | (b) | adhesion | | | (c) | surface tension | (d) | cavitation | | 6. | To av | void a correction for the effect of capillary in mar | ome | eters, the minimum diameter of tube (in mm) | | | (a) | 2.5 | (b) | 6 | | | (c) | 10 | (d) | 15 | | 7. | | pressure inside a soap bubble of 50 mm diame
sure. The surface tension in sop film would be | | is 25 N/m ² above the outside atmospheric N/m. | | | | 0.156 | Rentiner | 0.312 | | | (c) | 0.624 | (d) | 0.078 | | | | | | | | 8. | Whic | ch of the following forces act on a fluid at re | st? | | |-----|-------|---|-----------|---| | | | (i) gravity force | | (ii) hydrostatic force | | | | (iii) surface tension | (| iv) viscous force | | | Selec | et the correct answer using the code given be | elow: | | | | (a) | i, ii, iii and iv | (b) | i, ii and iii | | | (c) | ii and iv | (d) | i, iii, iv | | 9. | The l | neight of water column (in meters) correspo | nding to | o a pressure equivalent of 75 cm of mercury | | | (a) | 1.0 | (b) | 1.02 | | | (c) | 1.04 | (d) | 1.06 | | 10. | Resu | ltant pressure of the liquid in case of an imn | nersed b | oody acts through | | | (a) | centre of gravity | (b) | centre of pressure | | | (c) | metacentre | (d) | centre of buoyancy | | 11. | Ame | etallic piece weighs 80 N in air and 60 N in v | water. T | he relative density of the metal would be | | | (a) | 8 | (b) | 6 | | | (c) | 4 | (d) | 3 | | 12. | For v | varships, metacentric height of ship should | vary bet | ween | | | (a) | 0-1 m | (b) | 1-2 m | | | (c) | 5-10 m | (d) | more than 10 m | | 13. | The | fluid forces considered in the Navier Stokes | equation | on are | | | (a) | gravity, pressure and viscous | (b) | gravity, pressure and turbulent | | | (c) | viscous, pressure and laminar | (d) | gravity, turbulent and viscous | | 14. | The | property of stream function ψ is: | | | | | (a) | ψ is constant everywhere on any stream li | ne | | | | (b) | the flow around any path in the fluid is zero | for con | atinuous flow | | | (c) | the velocity vector may be found by differe | ntiating | the stream function | | | (d) | all of the above | | M CAN CANADA | | 15. | A flu | iid is said to be ideal, if it is | | | | | (a) | incompressible | (b) | inviscous | | | (c) | inviscous and incompressible | (d) | viscous and compressible | | 16. | Low | -torque high-speed motors are used in | | | | | (a) | cranes | (b) | winches | | | (c) | fans | (d) | all of the above | | 17. | The e | efficiency of pelton wheel shall be maximum | if the ra | tio of jet velocity to tangential velocity of the | | | (a) | 1/2 | (b) | 1 | | | (c) | 2 | (d) | 4 | | 18. | An in | npulse turbine | | | | | | is most suited for low head installations | (b) | always operates submerged | | | (c) | makes use of draft tube | (d) | is not expose to atmosphere | | 19. | A jet | of water impinges normally on a fixed plate. | The f | orced exerted on the plate will be | |-----|---------|---|--------|--| | | | wAV | (1) | wAV^2 | | | | $\frac{wAV}{g}$ | (b) | $\frac{wAV^2}{g}$ | | | (-) | $\frac{wAV^2}{2g}$ | (4) | $\frac{wAV}{2g}$ | | | (c) | 2g | (d) | 2g | | 20. | Thef | force of impingment of a jet on a vane increase | es if | | | | (a) | the vane angle is increased | (b) | the vane angle is decreased | | | (c) | the pressure is reduced | (d) | the vane is moved against the jet | | 21. | The | value of speed ratio for a Kaplan turbine is abo | out | | | | (a) | 0.5 | (b) | 0.9 | | | (c) | 1.5 | (d) | 2.0 | | 22. | Whic | ch of the following water turbine does not requ | iire a | draft tube? | | | (a) | Propeller turbine | (b) | Pelton turbine | | | (c) | Kaplan turbine | (d) | Francis turbine | | 23. | If n is | s the number of jets in a Pelton turbine, then it | s spe | cific speed is proportional to | | | (a) | n stal assegne translation (b) | (b) | \sqrt{n} | | | (c) | n^2 | (d) | independent of n | | 24. | The | unit power P _u of a turbine developing a power | r P un | nder a head H is | | | (a) | P/\sqrt{H} | (b) | $P/H^{3/2}$ | | | | $P/H^{5/2}$ | | P / H ^{4/5} | | 25 | . , | | | | | 45. | | ating characteristic curves of turbine means c
head | | discharge | | | | speed | 3.5 | efficiency | | 26 | 31.00 | procating compressors have maximum capacit | | | | 20. | (a) | 50 | (b) | 100 | | | (c) | | (d) | | | 27 | | dard air is air at | | Semmil equal pure uses with the low to the | | 27. | (a) | 1 bar pressure and 0°C temperature | | | | | (b) | 1 bar pressure and 15°C temperature | | | | | (c) | 1 bar pressure, 20°C temperature and 36% re | elativ | re humidity | | | (d) | atmospheric conditions of pressure and temp | | | | 28. | Whi | ch of the following types of impeller vanes are | nost | commonly used in centrifugal type impeller | | | (a) | | | radial | | | (c) | backward | (d) | tangential | | 29. | Max | imum delivery pressure for rotary bladed com | pres | sor is usually restricted tobar. | | | (a) | | | 10 In the second second second all all and a second | | | (c) | 20 | (d) | 50 | | 30. | Duri | ng peak load periods, the best method for con | npres | sor control is | | | | relief valve | | variable speed | | | (c) | start-stop motor | (d) | constant speed unloading | | 31. | In ax | ial compressor, exit flow angle deviation from | the l | olade angle is a function of | |-----|--------|---|--------|--| | | (a) | blade camber | (b) | both blade camber and space-chord ratio | | | (c) | space-chord ratio | (d) | blade camber and incidence angle | | 32. | Fort | he same tip diameter, axial flow compressor of | ompa | ared to centrifugal compressor offers higher | | | | pressure ratio | | mass flow | | | (c) | temperature ratio | (d) | speed of rotation | | 33. | Ano | bject having 10 kg mass weighs 9.81 kg on a | sprin | g balance. The value of 'g' at this place is | | | | 10 m/sec ² | | 9.81 m/sec ² | | | (c) | 10.2 m/sec ² | (d) | 9 m/sec ² | | 34. | A ba | lloon lifting in air follows the following principl | e | 2.0" 10.1 | | | | Law of gravitation | | Archimedes Principle | | | (c) | Principle of buoyancy | | All of the above | | 35. | | ercury in a barometer is replaced by water, the h | eight | of 3.75 cm of mercury will be following cm | | | of wa | | 4. | (a) Such a factor (a) | | | | 51 cm | (b) | | | | | 52 cm | (a) | 52.2 cm | | 36. | | hypersonic flow, the mach number is | | (a) | | | | unity | (b) | | | | | greater than 2 | (d) | greater than 4 | | 37. | | se of gas turbine in electric power stations ser | ves | | | | | to meet base load | | | | | 3.5 | to meet the peak loads | | on the series of the series of the series of | | | | to start thermal power plants | 0 11 | | | | 3 % | to generate power when other power source | s fail | | | 38. | | air-craft is powered by | | | | | | piston engine | | screw propeller | | | (c) | gas turbine | (d) | free piston engine | | 39. | Bern | oulli equation deals with the law of conservation | on of | In the set too being the wife | | | (a) | mass | | momentum | | | (c) | energy | (d) | work | | 40. | Incre | asing the number of reheating stages in a gas to | urbin | e to infinity makes the expansion tending | | | (a) | reversible adiabatic | (b) | isothermal | | | (c) | isobaric | (d) | adiabatic | | 41. | For in | ncompressible flow diverging section acts as o | liffus | er in the down-stream for | | | (a) | sonic state only | (b) | subsonic state only | | | (c) | supersonic state | (d) | both sonic and supersonic | | 42. | Nozz | ele used in rocket engine is | | | | | (a) | convergent nozzle | (b) | divergent nozzle | | | (c) | convergent-divergent nozzle | (d) | none of the above | | 43. | Ther | rate of heat transfer in drop-wise condensation | is_ | than firm condensation. | | | (a) | larger | (b) | smaller | | | (0) | equal | (4) | none | | 44. | Whi | ch of the following statem | ents are true? | | | | |------------|------|----------------------------------|--------------------------|--------|--|---| | | | i) piston pumps are s | elf-priming | | | | | | | ii) piston pumps requ | ire high maintenance | 9 | | | | | | iii) piston pumps have | e low cost of produc | tion | | | | | | iv) piston pumps have | low volumetric effic | cienc | y an antistan and the same | | | | (a) | i and ii | | (b) | iii and iv | | | | (c) | i and iii | | (d) | all of the above | | | 45. | Wha | t causes suction of fluid in | to the gear pump? | | | neilar at 1 | | | (a) | when pressure drops dur | ing disengagement | of tee | th at the suction side | | | | | when pressure increases | | | | Y (a) | | | (c) | when pressure drops dur | | | | | | | (d) | when pressure increases | | | | | | 46. | The | total energy developed by | | | | | | | (a) | Total energy = (Potential | | | | | | | (b) | Total energy = (Potential | | _ | | lesson nA . | | | (c) | Total energy = (Potential | | | | | | | (d) | None of the above | pilei da) | | | | | 47. | Whe | en is a pressure reducing v | alve used? | | | | | | | it is used when higher pro | | ressu | are is required | | | | (b) | it is used when lower pre | | | 2007 | | | | (c) | when absolutely zero pre | | | | | | | (d) | all of the above | Upr of | | | | | 48. | Whic | ch factor is considered whi | le selecting the dian | neter | of piston rod in hydraulic | cylinder? | | | | bore diameter | ar a concentrag une comm | (b) | length of stroke | cymider. | | | 0.0 | load | | (d) | all of the above | | | 49. | | ch of the following is not a | n accessory of the b | | d d | | | • • • • | | condenser | if accessory of the b | | economiser | | | | | air-preheater | | | feed water pump | Carlo | | 50 | 0.00 | | a acafficient of frieti | V3. 20 | | | | 30. | | is the Renold's number, the | e coefficient of fricti | 011 10 | 0 | | | | (a) | $\frac{1}{R}$ | | (b) | $\frac{\delta_{\cdot}}{R}$ | | | | | 12 | | | 16 | | | | (c) | $\frac{4}{R_e}$ $\frac{12}{R_e}$ | | (d) | $\frac{8}{R_e}$ $\frac{16}{R_o}$ | | | 5 1 | | | | | ne e | | | 51. | | transfer takes place as pe | | (h) | Eart lave of the same of the same | | | | | zeroth law of the thermodyna | | (b) | first law of thermodynar | nic | | | | second law of the thermo | example framed and h | (d) | Kirchoff's law | | | 52. | | unsteady heat flow occur | | 4 | A STATE OF THE PARTY PAR | | | | | through the walls of a refi | | (b) | during annealing of cast | | | Market | | through the walls of a fur | | (d) | through insulated pipe of | arrying steam | | 53. | | f the followings are unit of | thermal conductivity | | • | | | | | kcal/m.hr.°C | | | kJ/m.hr.K | | | | (c) | W/m.s.K | | (d) | cal/cm.s.°C | | | 54. | Mole | ecular transmission of heat is smallest in case of | f | | |-----|-------------|---|-----------------|---| | | (a) | gases | (b) | liquids | | | (c) | solids | (d) | alloys | | 55. | | is conducted through a 10 cm thick wall at the ss the wall is 10 °C. What is the thermal condu | | | | | (a) | 0.03 | (b) | 0.3 | | | (c) | 3.0 | (d) | 30 | | 56. | Two
same | walls of same thickness and cross-sectional area
temperature difference is maintained across th | a have
e wal | e thermal conductivities in the ratio 1:2. If the l faces, the ratio of heat flow Q_1/Q_2 will be | | | (a) | 1/2 | (b) | 1 mg collection interesting matrix (iii) | | | (c) | 2 ship processing of the fever flat frame | (d) | 4 minute excels a supering drugs; and | | 57. | Fins | are made as thin as possible to | | | | | (a) | reduce the total weight | (b) | accommodate more number of fins | | | (c) | increase the width for the same profile area | (d) | improve the flow of coolant around the fin | | 58. | An ir | acrease in convective coefficient over a fin | | C Table store of Polestial and | | | (a) | increases effectiveness | (b) | decreases effectiveness | | | (c) | does not influence effectiveness | (d) | influences only the fin efficiency | | 59. | In tra | nsient heat conduction, the two significant din | nensi | onless parameters are | | | | Reynolds and Prandtl number | | Biot and Fourier number | | | | Reynolds and Biot number | 200 | Reynolds and Fourier number | | 60. | Then | mal radiations occur in the portion of electrom | | | | | | 10 ⁻² to 10 ⁻⁴ micron | | 10 ⁻¹ to 10 ⁻² micron | | | 2.0 | 0.1 to 10 ² micron | | 10 ² micron onwards | | 61. | | transfer by radiation is encountered least in | ` ' | telemento vivo (6) | | 011 | | boiler furnace | (h) | insulated steam pipe | | | | electric bulb | | nuclear reactor | | 62 | 3.5 | ntensity of solar radiation (kW/m²) on earth is | | TRANSPORT (2) | | 02. | (a) | | (b) | 2 Talantana dia 12 | | | (c) | | | 10 | | 63 | 8.8 | convection heat flows depends on all of the fo | | | | 05. | | density | | coefficient of viscosity | | | | gravitational force | | velocity | | 61 | | | | | | 04. | | th dimensionless number has significant role in | | | | | 1 | Prandtl number | | Reynolds number | | | | Mach number | | Peclet number | | 65. | Nuss | is lost from a 100 mm diameter steam pipe ple
elt number is 25 W/m ² K and thermal conduct
icient will be W/m ² K | | | | | (a) | 7.5 | (b) | 16.5 | | | (c) | 25 | (d) | 30 | | 66. For the same operatin | g temperature limits th | e coefficier | nt of performance (COP) of heat pump equals | |---|-----------------------------|--------------|--| | (a) COP of refriger | rators | (b) | 1+ COP of refrigerators | | | | (0) | 1 COF of reingerators | | (c) COP of refriger | rator -1 | (d) | COP of refrigerator | | 67. Thermoelectric refrig | eration system is based | on | cor of refrigerator | | (a) Peltier effect | of seem is based | (b) | Joula off - | | (c) Joule-Thomson | throttling | (d) | | | 68. The refrigerating system | | | adiabatic magnetisation | | (a) Brayton cycle | or pussenger unclui | | | | (c) Ericsson cycle | | | Atkinson cycle | | 69. Which is usually the co | ostliest item in a rafrica. | (d) | Carnot cycle | | (a) condenser | ostnest item in a reiniger | | | | (c) compressor | | | capillary tube | | 70. The chemical formula | ofFrom 12: | (a) | evaporator | | (a) CCl F ₂ | of Freon-12 is | | and at principalities to | | (c) CCl ₂ F ₂ | | | CCl_2F_3 | | | | | CCIF | | 71. In conventional refriger(a) Chlorine | rants, what is the eleme | | | | (c) Carbon | | | Fluorine | | | | (d) | Hydrogen | | humidity ratio is given b | and $m_w = mass of water$ | er vapour i | n the air-water vapour mixture, then the | | (a) $\frac{m_w}{}$ | | | m_{α} | | m_a | | (b) | $m_{\rm w}$ | | (c) $\frac{m_w}{}$ | | 7.15 | m_a | | $m_a + m_w$ | | (d) | $\overline{m_a + m_w}$ | | 73. The comfort air-condition | oning and industrial air | conditionin | g differ in relation to | | (a) process adopted | | | equipment used | | (c) indoor requiremen | | (d) e | environmental condition | | 74. Dew point is the temper | ature at which the cond | lensation be | egins when the air is cooled at constant: | | (a) volume | | (b) e | entropy | | (c) pressure | | | nthalpy | | 75. Which of the following p | parameters remain cons | tant durino | a sensible cooling or heating process? | | (a) humidity ratio | | (b) re | elative humidity | | (c) enthalpy | | | vet bulb temperature | | 6. The vapour compression | refrigeration employs t | he followir | ng cycle | | (a) Reverse carnot | - Projet | (b) C | | | (c) Rankine | | | rayton | | 7. The air standard efficience of specific heats) | cy of an I.C. engine is gi | | here $r = $ Compression ratio, and $\gamma = $ Ratio | | (a) $1-r^{\gamma-1}$ | | (l-) 1 | r-1 | | (c) $1-(1/r^{\gamma-1})$ | | (b) 1- | one of those | | 78. | Whic | ch of the following is the lightest and most vol | atile lie | quid fuel? | |-----|---------------|---|-----------|--| | | (a) | Diesel | (b) | Kerosene | | | (c) | Fuel oil | (d) | Gasoline | | 79. | Whic | ch law of thermodynamics is known as law of | natur | e? | | | | Zeroth law | | First Law | | | (c) | Second Law | (d) | Third law | | 80. | Wha | t is the use of reheat cycle in steam turbines? | | | | | | To remove the moisture from the steam | (b) | To increase the steam temperature | | | (c) | To increase steam pressure | (d) | None of the these | | 81. | Claus | sius inequality is applied at | | and the second second | | | | reversible isothermal heat addition | (b) | reversible adiabatic expansion | | | (c) | reversible isothermal compression | | reversible isothermal heat rejection | | 82. | | deal gas with an internal energy U initially at | 0°C is | s heated to 273°C. What is the new internal | | | (a) | U | (b) | (1/2)U | | | (c) | (1/4)U | (d) | 2U | | 83. | Choc | ose the open thermodynamic sytem | | | | | (a) | manual ice cream freezer | (b) | centrifugal pump | | | (c) | pressure cooker | (d) | battery | | 84. | Whic | ch of the following is the extensive property o | f a the | rmodynamic system? | | | (a) | viscosity | (b) | specific enthalpy | | | (c) | density | (d) | potential energy | | 85. | Whic | ch one of the following quantities presents the | e prop | erty of a system? | | | (a) | $\int p dv$ | (b) | $\int v dp$ | | | (c) | $\int (pdv + vdp)$ | (d) | none of these | | 86. | A qu | asi static process is one in which all the state | s thro | igh which a system passes are very close to | | | (a) | equilibrium state | (b) | original state | | | (c) | same temperature | (d) | each other | | 87. | Whic | ch parameter remains constant during a revers | sible is | sothermal process? | | | (a) | internal energy | (b) | rate of heat exchange | | | (c) | enthalpy | (d) | entropy | | 88. | Negl
giver | ecting changes in potential and kinetic energ
by | ies, th | e shaft work during a steady flow process is | | | (a) | $\int p dv$ | (b) | $\int v dp$ | | | (c) | pv | (d) | $-\Delta h$ | | 89. | | ngine operates between temperatures limits and 400 K. For both engines to be equally effi | | - | | | (a) | 600 K | (b) | 625 K | | | (c) | 650 K | (d) | 700 K | | 90. | | rnot cycle is having an efficiency of 0.75. If the
C, what is the temperature of the low tempera | | | |-----|------------------------------|---|----------------|---| | | | 23 °C | | -23 °C | | | | 0 °C | | 250 °C | | 91. | Zero | th law: temperature; Second law: | | | | | (a) | entropy | (b) | enthalpy | | | (c) | internal energy | (d) | efficiency | | 92. | | at pump working on reversed carnot cycle has
of work input, the refrigeration effect in kW w | | | | | (a) | 1 | (b) | 2 | | | (c) | 3 | (d) | 4 | | 93. | In co | unter flow heat exchangers | | | | | (b)
(c) | both the fluids at inlet (of heat exchanger who
both the fluids at inlet are in their hottest state
both the fluids at exit are in their hottest state
one fluid is in hottest state and other in coldes | 2 | | | 94. | Cons | ider the following statements pertaining to heat | t tran | sfer through fins: | | | (i)
(ii)
(iii)
(iv) | Fins are equally effective irrespective of wheth
the temperature along the fin is variable and h
The fins may be made of materials that have a hig
Fins must be arranged at right angles to the dis | ence
her tl | the rate of heat transfer varies along the fin.
nermal conductive than the material of the wall. | | | | e above statement; | | | | | | i and ii are correct | (b) | ii and iv are correct | | | | i and iii are correct | | ii and iii are correct | | 05 | For th | he same compression ratio, the efficiency of du | al co | ambustion evele is | | 93. | (a)
(b)
(c) | greater than Diesel cycle and less than Otto cycless than Otto cycle and greater than Otto cycle greater than Otto cycle less than Diesel cycle | ycle | omoustion cycle is | | 96. | Whic | ch of the following cycles uses air as the refriger | rant | | | | (a) | Ericsson | (b) | Stirling | | | (c) | Carnot | (d) | Bell-coleman | | 97. | Depe | ending on the radiating properties, a body will l | be op | paque when | | | (a) | p = 0, $x = 0$ and $a = 1$ | (b) | p = 1, x = 0 and a = 0 | | | (c) | p = 0, x = 1 and a = 0 | (d) | x - 0, a + p = 1 | | | wher | e a = absorptivity, p = reflectivity, X = transmis | sivit | у | | 98. | Ther | ohenomenon of pre ignition | | | | | | always occur in diesel engines | (b) | never occur in diesel engines | | | (c) | always occur in petrol engines | | increases the power ouput of engines | | | | | | | | 99. | Which of the following automobile exhaust gas po | ollutan | ts is a major cause of photochemical smog? | |------|--|---------|--| | | (a) CO | | HC | | | (c) NO _x | (d) | SO _x | | 100. | The part of the engine is directly driven by the sta | rting n | notor? | | | (a) camshaft | (b) | crankshaft | | | (c) flywheel | (d) | none of these | | | | | | **** of manufacture the consulter of the manufacture of the state of the state of the consultation of the state same particular than the same of s